Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Audiol Neurootol ; 29(2): 124-135, 2024.
Article in English | MEDLINE | ID: mdl-37918367

ABSTRACT

INTRODUCTION: The main objective of the study was to validate the Norwegian translation of the Speech, Spatial and Qualities of Hearing Scale (SSQ) and investigate the SSQ disability profiles in a cochlear implant (CI) user population. METHODS: The study involved 152 adult CI users. The mean age at implantation was 55 (standard deviation [SD] = 16), and the mean CI experience was 5 years (SD = 4.8). The cohort was split into three groups depending on the hearing modality: bilateral CIs (BCIs), a unilateral CI (UCI), and bimodal (CI plus contralateral hearing aid; HCI). The SSQ disability profiles of each group were compared with those observed in similar studies using the English version and other translations of the SSQ. Standard values, internal consistency, sensitivity, and floor and ceiling effects were investigated, and the missing-response rates to specific questions were calculated. Relationships to speech perception were measured using monosyllabic word scores and the Norwegian Hearing in Noise Test scores. RESULTS: In the BCI group, the average scores were around 5.0 for the speech and spatial sections and 7.0 for the qualities section (SD ∼2). The average scores of the UCI and HCI groups were about one point lower than those of the BCI group. The SSQ disability profiles were comparable to the profiles in similar studies. The slopes of the linear regression lines measuring the relationships between the SSQ speech and monosyllabic word scores were 0.8 per 10% increase in the monosyllabic word score for the BCI group (explaining 35% of the variation) and 0.4 for the UCI and HCI groups (explaining 22-23% of the variation). CONCLUSION: The Norwegian version of the SSQ measures hearing disability similar to the original English version, and the internal consistency is good. Differences in the recipients' pre-implantation variables could explain some variations we observed in the SSQ responses, and such predictors should be investigated. Data aggregation will be possible using the SSQ as a routine clinical assessment in global CI populations. Moreover, pre-implantation variables should be systematically registered so that they can be used in mixed-effects models.


Subject(s)
Cochlear Implantation , Cochlear Implants , Hearing Loss , Speech Perception , Adult , Humans , Hearing Loss/diagnosis , Speech , Surveys and Questionnaires , Hearing/physiology , Hearing Tests , Speech Perception/physiology
2.
Front Psychol ; 10: 1813, 2019.
Article in English | MEDLINE | ID: mdl-31474900

ABSTRACT

Although the majority of early implanted, profoundly deaf children with cochlear implants (CIs), will develop correct pronunciation if they receive adequate oral language stimulation, many of them have difficulties with perceiving minute details of speech. The main aim of this study is to measure the confusion of consonants and vowels in well-performing children and adolescents with CIs. The study also aims to investigate how age at onset of severe to profound deafness influences perception. The participants are 36 children and adolescents with CIs (18 girls), with a mean (SD) age of 11.6 (3.0) years (range: 5.9-16.0 years). Twenty-nine of them are prelingually deaf and seven are postlingually deaf. Two reference groups of normal-hearing (NH) 6- and 13-year-olds are included. Consonant and vowel perception is measured by repetition of 16 bisyllabic vowel-consonant-vowel nonsense words and nine monosyllabic consonant-vowel-consonant nonsense words in an open-set design. For the participants with CIs, consonants were mostly confused with consonants with the same voicing and manner, and the mean (SD) voiced consonant repetition score, 63.9 (10.6)%, was considerably lower than the mean (SD) unvoiced consonant score, 76.9 (9.3)%. There was a devoicing bias for the stops; unvoiced stops were confused with other unvoiced stops and not with voiced stops, and voiced stops were confused with both unvoiced stops and other voiced stops. The mean (SD) vowel repetition score was 85.2 (10.6)% and there was a bias in the confusions of [i:] and [y:]; [y:] was perceived as [i:] twice as often as [y:] was repeated correctly. Subgroup analyses showed no statistically significant differences between the consonant scores for pre- and postlingually deaf participants. For the NH participants, the consonant repetition scores were substantially higher and the difference between voiced and unvoiced consonant repetition scores considerably lower than for the participants with CIs. The participants with CIs obtained scores close to ceiling on vowels and real-word monosyllables, but their perception was substantially lower for voiced consonants. This may partly be related to limitations in the CI technology for the transmission of low-frequency sounds, such as insertion depth of the electrode and ability to convey temporal information.

3.
J Speech Lang Hear Res ; 61(4): 1023-1050, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29623340

ABSTRACT

Purpose: The purpose of this systematic review and meta-analysis was to establish a baseline of the vowel and consonant identification scores in prelingually and postlingually deaf users of multichannel cochlear implants (CIs) tested with consonant-vowel-consonant and vowel-consonant-vowel nonsense syllables. Method: Six electronic databases were searched for peer-reviewed articles reporting consonant and vowel identification scores in CI users measured by nonsense words. Relevant studies were independently assessed and screened by 2 reviewers. Consonant and vowel identification scores were presented in forest plots and compared between studies in a meta-analysis. Results: Forty-seven articles with 50 studies, including 647 participants, thereof 581 postlingually deaf and 66 prelingually deaf, met the inclusion criteria of this study. The mean performance on vowel identification tasks for the postlingually deaf CI users was 76.8% (N = 5), which was higher than the mean performance for the prelingually deaf CI users (67.7%; N = 1). The mean performance on consonant identification tasks for the postlingually deaf CI users was higher (58.4%; N = 44) than for the prelingually deaf CI users (46.7%; N = 6). The most common consonant confusions were found between those with same manner of articulation (/k/ as /t/, /m/ as /n/, and /p/ as /t/). Conclusions: The mean performance on consonant identification tasks for the prelingually and postlingually deaf CI users was found. There were no statistically significant differences between the scores for prelingually and postlingually deaf CI users. The consonants that were incorrectly identified were typically confused with other consonants with the same acoustic properties, namely, voicing, duration, nasality, and silent gaps. A univariate metaregression model, although not statistically significant, indicated that duration of implant use in postlingually deaf adults predict a substantial portion of their consonant identification ability. As there is no ceiling effect, a nonsense syllable identification test may be a useful addition to the standard test battery in audiology clinics when assessing the speech perception of CI users.


Subject(s)
Cochlear Implants , Deafness/diagnosis , Deafness/rehabilitation , Phonetics , Speech Perception , Hearing Tests , Humans , Language Tests
4.
Ear Hear ; 38(3): 301-313, 2017.
Article in English | MEDLINE | ID: mdl-27828788

ABSTRACT

OBJECTIVES: The aim of this retrospective cohort study was to assess speech perception outcomes of second-side cochlear implants (CI2) relative to first-side implants (CI1) in 160 participants who received their CI1 as a child. The predictive factors of CI2 speech perception outcomes were investigated. In addition, CI2 device use predictive models were assessed using the categorical variable of participant's decision to use CI2 for a minimum of 5 years after surgery. Findings from a prospective study that evaluated the bilateral benefit for speech recognition in noise in a participant subgroup (n = 29) are also presented. DESIGN: Participants received CI2 between 2003 and 2009 (and CI1 between 1988 and 2008), and were observed from surgery to a minimum of 5 years after sequential surgery. Group A (n = 110) comprised prelingually deaf children (severe to profound) with no or little acquired oral language before implantation, while group B (n = 50) comprised prelingually deaf children with acquired language before implantation, in addition to perilingually and postlingually deaf children. Speech perception outcomes included the monosyllable test score or the closed-set Early Speech Perception test score if the monosyllable test was too difficult. To evaluate bilateral benefit for speech recognition in noise, participants were tested with the Hearing in Noise test in bilateral and "best CI" test conditions with noise from the front and noise from either side. Bilateral advantage was calculated by subtracting the Hearing in Noise test speech reception thresholds in noise obtained in the bilateral listening mode from those obtained in the unilateral "best CI" mode. RESULTS: On average, CI1 speech perception was 28% better than CI2 performance in group A, the same difference was 20% in group B. A small bilateral speech perception benefit of using CI2 was measured, 3% in group A and 7% in group B. Longer interimplant interval predicted poorer CI2 speech perception in group A, but only for those who did not use a hearing aid in the interimplant interval in group B. At least 5 years after surgery, 25% of group A and 10% of group B did not use CI2. In group A, prediction factors for nonuse of CI2 were longer interimplant intervals or CI2 age. Large difference in speech perception between the two sides was a predictor for CI2 nonuse in both groups. Bilateral advantage for speech recognition in noise was mainly obtained for the condition with noise near the "best CI"; the addition of a second CI offered a new head shadow benefit. A small mean disadvantage was measured when the noise was located opposite to the "best CI." However, the latter was not significant. CONCLUSIONS: Generally, in both groups, if CI2 did not become comparable with CI1, participants were more likely to choose not to use CI2 after some time. In group A, increased interimplant intervals predicted poorer CI2 speech perception results and increased the risk of not using CI2 at a later date. Bilateral benefit was mainly obtained when noise was opposite to CI2, introducing a new head shadow benefit.


Subject(s)
Cochlear Implants , Hearing Loss, Bilateral/rehabilitation , Speech Perception , Child , Child, Preschool , Cochlear Implantation/methods , Female , Humans , Infant , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...