Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Scand J Med Sci Sports ; 28(6): 1636-1652, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29469995

ABSTRACT

Live high-train low (LHTL) using hypobaric hypoxia was previously found to improve sea-level endurance performance in well-trained individuals; however, confirmatory controlled data in athletes are lacking. Here, we test the hypothesis that natural-altitude LHTL improves aerobic performance in cross-country skiers, in conjunction with expansion of total hemoglobin mass (Hbmass , carbon monoxide rebreathing technique) promoted by accelerated erythropoiesis. Following duplicate baseline measurements at sea level over the course of 2 weeks, nineteen Norwegian cross-country skiers (three women, sixteen men, age 20 ± 2 year, maximal oxygen uptake (VO2 max) 69 ± 5 mL/min/kg) were assigned to 26 consecutive nights spent at either low (1035 m, control, n = 8) or moderate altitude (2207 m, daily exposure 16.7 ± 0.5 hours, LHTL, n = 11). All athletes trained together daily at a common location ranging from 550 to 1500 m (21.2% of training time at 550 m, 44.2% at 550-800 m, 16.6% at 800-1100 m, 18.0% at 1100-1500 m). Three test sessions at sea level were performed over the first 3 weeks after intervention. Despite the demonstration of nocturnal hypoxemia at moderate altitude (pulse oximetry), LHTL had no specific effect on serum erythropoietin, reticulocytes, Hbmass , VO2 max, or 3000-m running performance. Also, LHTL had no specific effect on (a) running economy (VO2 assessed during steady-state submaximal exercise), (b) respiratory capacities or efficiency of the skeletal muscle (biopsy), and (c) diffusing capacity of the lung. This study, showing similar physiological responses and performance improvements in the two groups following intervention, suggests that in young cross-country skiers, improvements in sea-level aerobic performance associated with LHTL may not be due to moderate-altitude acclimatization.


Subject(s)
Altitude , Athletic Performance/physiology , Hypoxia/blood , Oxygen Consumption , Skiing/physiology , Acclimatization/physiology , Athletes , Erythropoietin/blood , Female , Humans , Male , Oximetry , Physical Conditioning, Human/methods , Reticulocytes/cytology , Young Adult
2.
Scand J Med Sci Sports ; 28(3): 893-904, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29024041

ABSTRACT

The purpose of this study was to investigate the effects of adding strength training with or without vibration to cross-country (XC) skiers' endurance training on double-poling (DP) performance, physiological, and kinematic adaptations. Twenty-one well-trained male XC-skiers combined endurance- and upper-body strength training three times per week, either with (n = 11) or without (n = 10) superimposed vibrations for 8 weeks, whereas eight skiers performed endurance training only (CON). Testing included 1RM in upper-body exercises, work economy, neural activation, oxygen saturation in muscle, and DP kinematics during a prolonged submaximal DP roller ski test which was directly followed by a time to exhaustion (TTE) test. TTE was also performed in rested state, and the difference between the two TTE tests (TTEdiff ) determined the ability to maintain DP performance after prolonged exercise. Vibration induced no additional effect on strength or endurance gains. Therefore, the two strength training groups were pooled (STR, n = 21). 1RM in STR increased more than in CON (P < .05), and there were no differences in changes between STR and CON in any measurements during prolonged submaximal DP. STR improved TTE following prolonged DP (20 ± 16%, P < .001) and revealed a moderate effect size compared to CON (ES = 0.80; P = .07). Furthermore, STR improved TTEdiff more than CON (P = .049). In conclusion, STR superiorly improved 1RM strength, DP performance following prolonged submaximal DP and TTEdiff , indicating a specific effect of improved strength on the ability to maintain performance after long-lasting exercise.


Subject(s)
Athletic Performance , Resistance Training , Skiing/physiology , Absorptiometry, Photon , Adult , Biomechanical Phenomena , Electromyography , Exercise Test , Humans , Lactic Acid/blood , Male , Muscle Strength , Oxygen Consumption , Physical Conditioning, Human , Spectroscopy, Near-Infrared , Young Adult
3.
Scand J Med Sci Sports ; 27(11): 1190-1201, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27726197

ABSTRACT

Blood flow restricted exercise (BFRE) with low loads has been demonstrated to induce considerable stress to exercising muscles. Muscle cells have developed a series of defensive systems against exercise-induced stress. However, little is known about acute and long-term effects of BFRE training on these systems. Nine previously untrained females trained low-load BFRE and heavy load strength training (HLS) on separate legs and on separate days to investigate acute and long-term effects on heat shock proteins (HSP) and endogenous antioxidant systems in skeletal muscles. BFRE and HLS increased muscle strength similarly by 12 ± 7% and 12 ± 6%, respectively, after 12 weeks of training. Acutely after the first BFRE and HLS exercise session, αB-crystallin and HSP27 content increased in cytoskeletal structures, accompanied by increased expression of several HSP genes. After 12 weeks of training, this acute HSP response was absent. Basal levels of αB-crystallin, HSP27, HSP70, mnSOD, or GPx1 remained unchanged after 12 weeks of training, but HSP27 levels increased in the cytoskeleton. Marked translocation of HSP to cytoskeletal structures at the commencement of training indicates that these structures are highly stressed from BFRE and HLS. However, as the muscle gets used to this type of exercise, this response is abolished.


Subject(s)
Antioxidants/physiology , Exercise/physiology , Heat-Shock Proteins/physiology , Muscle, Skeletal/blood supply , Resistance Training , Female , Glutathione Peroxidase/physiology , HSP27 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Humans , Leg/physiology , Muscle, Skeletal/physiology , Regional Blood Flow , Superoxide Dismutase , Time Factors , Young Adult , alpha-Crystallin B Chain/physiology
4.
Scand J Med Sci Sports ; 26(4): 384-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25892654

ABSTRACT

The purpose of this study was to investigate the effect of adding heavy strength training to well-trained female cyclists' normal endurance training on cycling performance. Nineteen female cyclists were randomly assigned to 11 weeks of either normal endurance training combined with heavy strength training (E+S, n = 11) or to normal endurance training only (E, n = 8). E+S increased one repetition maximum in one-legged leg press and quadriceps muscle cross-sectional area (CSA) more than E (P < 0.05), and improved mean power output in a 40-min all-out trial, fractional utilization of VO2 max and cycling economy (P < 0.05). The proportion of type IIAX-IIX muscle fibers in m. vastus lateralis was reduced in E+S with a concomitant increase in type IIA fibers (P < 0.05). No changes occurred in E. The individual changes in performance during the 40-min all-out trial was correlated with both change in IIAX-IIX fiber proportion (r = -0.63) and change in muscle CSA (r = 0.73). In conclusion, adding heavy strength training improved cycling performance, increased fractional utilization of VO2 max , and improved cycling economy. The main mechanisms behind these improvements seemed to be increased quadriceps muscle CSA and fiber type shifts from type IIAX-IIX toward type IIA.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Oxygen Consumption/physiology , Resistance Training/methods , Adult , Athletes , Exercise Test , Female , Humans , Lactic Acid/blood , Muscle Fibers, Skeletal/physiology , Muscle Strength/physiology , Physical Endurance/physiology , Quadriceps Muscle/physiology , Young Adult
5.
Scand J Med Sci Sports ; 26(2): 140-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25648345

ABSTRACT

The purpose of this study was to compare the effect of two different methods of organizing endurance training in elite cross-country skiers approaching the competition period. During the 5-week intervention period, one group performed block periodization (BP; n = 10) with 5 and 3 high-intensity sessions (HIT) during the first and third training week. One HIT was performed during the remaining weeks in BP, while the group performing traditional training organization (TRAD, n = 9) performed two weekly HIT except during the third week where they performed three HIT. HIT were interspersed with low-intensity training (LIT) and both groups performed similar total amount of both HIT and LIT during the intervention. BP achieved a larger relative increase in peak power output and power output at a blood lactate concentration of 4 mmol/L than TRAD (4 ± 4 vs -3 ± 6% and 11 ± 10 vs 2 ± 4%, respectively, both P < 0.01). BP also increased maximal oxygen uptake by 2 ± 2% (P < 0.05), while no changes occurred in TRAD. The effect sizes of the relative improvement in these measurements revealed moderate effects of BP vs TRAD training. The present study suggests that block periodization of endurance training have superior effects on several endurance and performance indices compared with traditional organization.


Subject(s)
Physical Conditioning, Human/methods , Physical Conditioning, Human/physiology , Physical Endurance/physiology , Skiing/physiology , Adolescent , Adult , Exercise Test , Female , Humans , Lactic Acid/blood , Male , Oxygen Consumption , Periodicity , Physical Exertion/physiology , Young Adult
6.
Scand J Med Sci Sports ; 26(9): 1007-16, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26146761

ABSTRACT

We investigated the effects of adding heavy strength training to a high volume of endurance training on performance and related physiological determinants in junior female cross-country skiers. Sixteen well-trained athletes (17 ± 1 years, 60 ± 6 kg, 169 ± 6 cm, VO2max running: 60 ± 5 mL/kg/min) were assigned either to an intervention group (INT; n = 9) or a control group (CON; n = 7). INT completed two weekly sessions of upper body heavy strength training in a linear periodized fashion for 10 weeks. Both groups continued their normal aerobic endurance and muscular endurance training. One repetition maximum in seated pull-down increased significantly more in INT than in CON, with a group difference of 15 ± 8% (P < 0.01). Performance, expressed as average power output on a double poling ergometer over 20 s and as 3 min with maximal effort in both rested (sprint-test) and fatigued states (finishing-test), showed similar changes in both groups. Submaximal O2 -cost and VO2peak in double poling showed similar changes or were unchanged in both groups. In conclusion, 10 weeks of heavy strength training increased upper body strength but had trivial effects on performance in a double poling ergometer in junior female cross-country skiers.


Subject(s)
Athletic Performance/physiology , Muscle Strength , Resistance Training , Skiing/physiology , Adolescent , Exercise Test , Female , Humans , Oxygen Consumption , Physical Conditioning, Human/physiology , Physical Exertion , Resistance Training/methods , Torso , Upper Extremity
7.
Scand J Med Sci Sports ; 25(2): 143-51, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24382021

ABSTRACT

The purpose of this study was to compare the effects of 10 weeks of effort-matched short intervals (SI; n = 9) or long intervals (LI; n = 7) in cyclists. The high-intensity interval sessions (HIT) were performed twice a week interspersed with low-intensity training. There were no differences between groups at pretest. There were no differences between groups in total volume of both HIT and low-intensity training. The SI group achieved a larger relative improvement in VO(2max) than the LI group (8.7% ± 5.0% vs 2.6% ± 5.2%), respectively, P ≤ 0.05). Mean effect size (ES) of the relative improvement in all measured parameters, including performance measured as mean power output during 30-s all-out, 5-min all-out, and 40-min all-out tests revealed a moderate-to-large effect of SI training vs LI training (ES range was 0.86-1.54). These results suggest that the present SI protocol induces superior training adaptations on both the high-power region and lower power region of cyclists' power profile compared with the present LI protocol.


Subject(s)
Adaptation, Physiological/physiology , Bicycling/physiology , Physical Endurance/physiology , Adult , Exercise Test , Humans , Male , Oxygen Consumption , Time Factors
8.
Scand J Med Sci Sports ; 25(1): e89-98, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24862305

ABSTRACT

The purpose was to investigate the effect of 25 weeks heavy strength training in young elite cyclists. Nine cyclists performed endurance training and heavy strength training (ES) while seven cyclists performed endurance training only (E). ES, but not E, resulted in increases in isometric half squat performance, lean lower body mass, peak power output during Wingate test, peak aerobic power output (W(max)), power output at 4 mmol L(-1)[la(-)], mean power output during 40-min all-out trial, and earlier occurrence of peak torque during the pedal stroke (P < 0.05). ES achieved superior improvements in W(max) and mean power output during 40-min all-out trial compared with E (P < 0.05). The improvement in 40-min all-out performance was associated with the change toward achieving peak torque earlier in the pedal stroke (r = 0.66, P < 0.01). Neither of the groups displayed alterations in VO2max or cycling economy. In conclusion, heavy strength training leads to improved cycling performance in elite cyclists as evidenced by a superior effect size of ES training vs E training on relative improvements in power output at 4 mmol L(-1)[la(-)], peak power output during 30-s Wingate test, W(max), and mean power output during 40-min all-out trial.


Subject(s)
Athletic Performance , Bicycling , Muscle Strength , Muscle, Skeletal , Physical Endurance , Resistance Training/methods , Adolescent , Exercise , Humans , Oxygen Consumption , Torque , Young Adult
9.
Eur J Appl Physiol ; 114(9): 1875-88, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24906447

ABSTRACT

PURPOSE: To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. METHODS: Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. RESULTS: The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. CONCLUSION: No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.


Subject(s)
Body Weight , Fibronectins/metabolism , Muscle, Skeletal/metabolism , Resistance Training , Adult , Female , Fibronectins/blood , Fibronectins/genetics , Humans , Muscle, Skeletal/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenotype , Thyroid Hormones/blood , Transcription Factors/blood , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Scand J Med Sci Sports ; 24(5): e332-42, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24924099

ABSTRACT

Determination of muscle fiber composition in human skeletal muscle biopsies is often performed using immunohistochemistry, a method that tends to be both time consuming, technically challenging, and complicated by limited availability of tissue. Here, we introduce quantitative reverse transcriptase polymerase chain reaction (qRT-PCR)-based Gene-family profiling (GeneFam) of myosin heavy chain (MyHC) mRNA expression as a high-throughput, sensitive, and reliable alternative. We show that GeneFam and immunohistochemistry result in similar disclosures of alterations in muscle fiber composition in biopsies from musculus vastus lateralis and musculus biceps brachii of previously untrained young women after 12 weeks of progressive strength training. The adaptations were evident as (a) consistent increases in MyHC2A abundance; (b) consistent decreases in MyHC2X abundance; and (c) consistently stable MyHC1 abundance, and were not found using traditional reference gene-based qRT-PCR analyses. Furthermore, muscle fiber composition found using each of the two approaches was correlated with each other (r = 0.50, 0.74, and 0.78 for MyHC1, A, and X, respectively), suggesting that GeneFam may be suitable for ranking of individual muscle phenotype, particularly for MyHC2 fibers. In summary, GeneFam of MyHC mRNA resulted in reliable assessment of alterations in muscle fiber composition in skeletal muscle of previously untrained women after 12 weeks of strength training.


Subject(s)
Physical Conditioning, Human/physiology , Quadriceps Muscle/chemistry , RNA, Messenger/analysis , Resistance Training , Adult , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Myosin Heavy Chains/genetics , Phenotype , Quadriceps Muscle/cytology , Real-Time Polymerase Chain Reaction , Young Adult
11.
Scand J Med Sci Sports ; 24(2): 327-35, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23134196

ABSTRACT

The purpose of this study was to compare the effects of two different methods of organizing endurance training in trained cyclists during a 12-week preparation period. One group of cyclists performed block periodization (BP; n = 8), wherein every fourth week constituted five sessions of high-intensity aerobic training (HIT), followed by 3 weeks of one HIT session. Another group performed a more traditional organization (TRAD; n = 7), with 12 weeks of two weekly HIT sessions. The HIT was interspersed with low-intensity training (LIT) so that similar total volumes of both HIT and LIT were performed in the two groups. BP achieved a larger relative improvement in VO2max than TRAD (8.8 ± 5.9% vs 3.7 ± 2.9%, respectively, < 0.05) and a tendency toward larger increase in power output at 2 mmol/L [la(-)] (22 ± 14% vs 10 ± 7%, respectively, P = 0.054). Mean effect size (ES) of the relative improvement in VO2max , power output at 2 mmol/L [la(-)], hemoglobin mass, and mean power output during 40-min all-out trial revealed moderate superior effects of BP compared with TRAD training (ES range was 0.62-1.12). The present study suggests that BP of endurance training has superior effects on several endurance and performance indices compared with TRAD.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Physical Conditioning, Human/methods , Physical Conditioning, Human/physiology , Adult , Hemoglobins/metabolism , Humans , Male , Muscle Strength/physiology , Oxygen Consumption/physiology , Physical Endurance/physiology , Time Factors
12.
Scand J Med Sci Sports ; 24(1): 34-42, 2014 Feb.
Article in English | MEDLINE | ID: mdl-22646668

ABSTRACT

The purpose of this study was to compare the effect of two different methods of organizing endurance training in trained cyclists. One group of cyclists performed block periodization, wherein the first week constituted five sessions of high-intensity aerobic training (HIT), followed by 3 weeks of one weekly HIT session and focus on low-intensity training (LIT) (BP; n = 10, VO2max = 62 ± 2 mL/kg/min). Another group of cyclists performed a more traditional organization, with 4 weeks of two weekly HIT sessions interspersed with LIT (TRAD; n = 9, VO2max = 63 ± 2 mL/kg/min). Similar volumes of both HIT and LIT was performed in the two groups. While BP increased VO2max , peak power output (Wmax) and power output at 2 mmol/L [la(-)] by 4.6 ± 3.7%, 2.1 ± 2.8%, and 10 ± 12%, respectively (P < 0.05), no changes occurred in TRAD. BP showed relative improvements in VO2max compared with TRAD (P < 0.05). Mean effect size (ES) of the relative improvement in VO2max , Wmax , and power output at 2 mmol/L [la(-)] revealed large to moderate effects of BP training compared with TRAD training (ES = 1.34, ES = 0.85, and ES = 0.71, respectively). The present study suggests that block periodization of training provides superior adaptations to traditional organization during a 4-week endurance training period, despite similar training volume and intensity.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Oxygen Consumption/physiology , Physical Conditioning, Human/methods , Physical Endurance/physiology , Adaptation, Physiological/physiology , Adult , Humans , Lactic Acid/blood , Male , Time Factors , Young Adult
13.
Scand J Med Sci Sports ; 24(4): 603-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23914932

ABSTRACT

Here we report on the effect of combining endurance training with heavy or explosive strength training on endurance performance in endurance-trained runners and cyclists. Running economy is improved by performing combined endurance training with either heavy or explosive strength training. However, heavy strength training is recommended for improving cycling economy. Equivocal findings exist regarding the effects on power output or velocity at the lactate threshold. Concurrent endurance and heavy strength training can increase running speed and power output at VO2max (Vmax and Wmax, respectively) or time to exhaustion at Vmax and Wmax. Combining endurance training with either explosive or heavy strength training can improve running performance, while there is most compelling evidence of an additive effect on cycling performance when heavy strength training is used. It is suggested that the improved endurance performance may relate to delayed activation of less efficient type II fibers, improved neuromuscular efficiency, conversion of fast-twitch type IIX fibers into more fatigue-resistant type IIA fibers, or improved musculo-tendinous stiffness.


Subject(s)
Anaerobic Threshold , Athletic Performance/physiology , Bicycling/physiology , Physical Conditioning, Human/methods , Resistance Training/methods , Running/physiology , Humans , Lactic Acid/blood , Physical Conditioning, Human/physiology , Resistance Training/adverse effects
14.
Eur J Appl Physiol ; 112(5): 1773-82, 2012 May.
Article in English | MEDLINE | ID: mdl-21901266

ABSTRACT

A single bout of high-force exercise has been shown to increase the muscle levels of heat shock proteins (HSPs). Here, changes in the levels of HSPs after 2 and 11 weeks of strength training with either one or three sets per exercise were examined. Fifteen young men (27 ± 6 years, 182 ± 8 cm and 82 ± 13 kg) were randomized to train either one set in lower-body exercises and three sets in upper-body exercises (1L-3UB), or three sets in lower-body exercises and one set in upper-body exercises (3L-1UB). Biopsies from vastus lateralis and trapezius were obtained before, during (2 weeks) and after 11 weeks of strength training (3 bouts per week). The biopsies were analysed for HSP27 (cytosolic and cytoskeletal fractions) and HSP70 and αB-crystallin (cytosolic fraction). No evidence for an effect of training volume (1 vs. 3 sets) on the HSP response was found. For all subjects combined, HSP27 [186 ± 69% (mean ± SD)], HSP70 (146 ± 51%) and αB-crystallin (184 ± 82%) increased in the cytosolic fraction of vastus lateralis after 11 weeks of training. In the trapezius, the only observed increase was for HSP27 in the cytosolic fraction after 2 weeks of training (149 ± 59%). However, the trapezius contained somewhat higher levels of HSP70 and αB-crystallin than vastus lateralis at baseline. The HSP27 levels in the cytoskeletal compartment did not increase significantly in either muscle. In conclusion, strength training resulted-independent of training volume-in elevated levels of HSP27, HSP70 and αB-crystallin in the cytosolic compartment of the vastus lateralis. In the trapezius, only the cytosolic HSP27 levels were increased with training.


Subject(s)
Exercise/physiology , HSP27 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Muscle, Skeletal/metabolism , Resistance Training , alpha-Crystallin B Chain/metabolism , Adult , Biopsy , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Humans , Male , Quadriceps Muscle , Resistance Training/methods , Young Adult
15.
Scand J Med Sci Sports ; 21(3): 389-401, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20136751

ABSTRACT

AIM: To investigate the effect of supplementing high-volume endurance training with heavy strength training on muscle adaptations and physical performance in elite cross country skiers. Eleven male (18-26 years) and eight female (18-27 years) were assigned to either a strength group (STR) (n=9) or a control group (CON) (n=10). STR performed strength training twice a week for 12 weeks in addition to their normal endurance training. STR improved 1 repetition maximum (RM) for seated pull-down and half squat (19 ± 2% and 12 ± 2%, respectively), while no change was observed in CON. Cross-sectional area (CSA) increased in m. triceps brachii for both STR and CON, while there was no change in the m. quadriceps CSA. VO(2max) during skate-rollerskiing increased in STR (7 ± 1%), while VO(2max) during running was unchanged. No change was observed in energy consumption during rollerskiing at submaximal intensities. Double-poling performance improved more for STR than for CON. Both groups showed a similar improvement in rollerski time-trial performance. In conclusion, 12 weeks of supplemental heavy strength training improved the strength in leg and upper body muscles, but had little effect on the muscle CSA in thigh muscles. The supplemental strength training improved both VO(2max) during skate-rollerskiing and double-poling performance.


Subject(s)
Athletic Performance/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Resistance Training/methods , Skiing/physiology , Adolescent , Adult , Female , Humans , Male , Muscle, Skeletal/anatomy & histology , Young Adult
16.
Scand J Med Sci Sports ; 21(2): 250-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-19903319

ABSTRACT

To investigate the effects of heavy strength training on the mean power output in a 5-min all-out trial following 185 min of submaximal cycling at 44% of maximal aerobic power output in well-trained cyclists. Twenty well-trained cyclists were assigned to either usual endurance training combined with heavy strength training [E+S; n=11 (♂=11)] or to usual endurance training only [E; n=9 (♂=7, ♀=2)]. The strength training performed by E+S consisted of four lower body exercises [3 × 4-10 repetition maximum (RM)], which were performed twice a week for 12 weeks. E+S increased 1 RM in half-squat (P≤0.001), while no change occurred in E. E+S led to greater reductions than E in oxygen consumption, heart rate, blood lactate concentration, and rate of perceived exertion (P<0.05) during the last hour of the prolonged cycling. Further, E+S increased the mean power output during the 5-min all-out trial (from 371 ± 9 to 400 ± 13 W, P<0.05), while no change occurred in E. In conclusion, adding strength training to usual endurance training improves leg strength and 5-min all-out performance following 185 min of cycling in well-trained cyclists.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Resistance Training , Adult , Analysis of Variance , Female , Humans , Male , Oxygen Consumption/physiology , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...