Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Neuropathol Appl Neurobiol ; 45(3): 230-243, 2019 04.
Article in English | MEDLINE | ID: mdl-29722054

ABSTRACT

AIMS: Quantitative estimation of cortical neurone loss in cases with chorea-acanthocytosis (ChAc) and its impact on laminar composition. METHODS: We used unbiased stereological tools to estimate the degree of cortical pathology in serial gallocyanin-stained brain sections through the complete hemispheres of three subjects with genetically verified ChAc and a range of disease durations. We compared these results with our previous data of five Huntington's disease (HD) and five control cases. Pathoarchitectonic changes were exemplarily documented in TE1 of a 61-year-old female HD-, a 60-year-old female control case, and ChAc3. RESULTS: Macroscopically, the cortical volume of our ChAc cases (ChAc1-3) remained close to normal. However, the average number of neurones was reduced by 46% in ChAc and by 33% in HD (P = 0.03 for ChAc & HD vs. controls; P = 0.64 for ChAc vs. HD). Terminal HD cases featured selective laminar neurone loss with pallor of layers III, V and VIa, a high density of small, pale, closely packed radial fibres in deep cortical layers VI and V, shrinkage, and chromophilia of subcortical white matter. In ChAc, pronounced diffuse astrogliosis blurred the laminar borders, thus masking the complete and partial loss of pyramidal cells in layer IIIc and of neurones in layers III, V and VI. CONCLUSION: ChAc is a neurodegenerative disease with distinct cortical neurodegeneration. The hypertrophy of the peripheral neuropil space of minicolumns with coarse vertical striation was characteristic of ChAc. The role of astroglia in the pathogenesis of this disorder remains to be elucidated.


Subject(s)
Cerebral Cortex/pathology , Huntington Disease/pathology , Neuroacanthocytosis/pathology , Adult , Aged , Cerebral Cortex/cytology , Female , Humans , Male , Middle Aged
2.
Neuropathol Appl Neurobiol ; 43(5): 393-408, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28117917

ABSTRACT

AIMS: Hyperphosphorylated tau neuronal cytoplasmic inclusions (ht-NCI) are the best protein correlate of clinical decline in Alzheimer's disease (AD). Qualitative evidence identifies ht-NCI accumulating in the isodendritic core before the entorhinal cortex. Here, we used unbiased stereology to quantify ht-NCI burden in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), aiming to characterize the impact of AD pathology in these nuclei with a focus on early stages. METHODS: We utilized unbiased stereology in a sample of 48 well-characterized subjects enriched for controls and early AD stages. ht-NCI counts were estimated in 60-µm-thick sections immunostained for p-tau throughout LC and DRN. Data were integrated with unbiased estimates of LC and DRN neuronal population for a subset of cases. RESULTS: In Braak stage 0, 7.9% and 2.6% of neurons in LC and DRN, respectively, harbour ht-NCIs. Although the number of ht-NCI+ neurons significantly increased by about 1.9× between Braak stages 0 to I in LC (P = 0.02), we failed to detect any significant difference between Braak stage I and II. Also, the number of ht-NCI+ neurons remained stable in DRN between all stages 0 and II. Finally, the differential susceptibility to tau inclusions among nuclear subdivisions was more notable in LC than in DRN. CONCLUSIONS: LC and DRN neurons exhibited ht-NCI during AD precortical stages. The ht-NCI increases along AD progression on both nuclei, but quantitative changes in LC precede DRN changes.


Subject(s)
Alzheimer Disease/pathology , Dorsal Raphe Nucleus/pathology , Locus Coeruleus/pathology , tau Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Disease Progression , Dorsal Raphe Nucleus/metabolism , Female , Humans , Inclusion Bodies/pathology , Locus Coeruleus/metabolism , Male , Middle Aged
3.
Brain Pathol ; 26(6): 726-740, 2016 11.
Article in English | MEDLINE | ID: mdl-27529157

ABSTRACT

Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought.


Subject(s)
Brain/pathology , Huntington Disease/pathology , Neurodegenerative Diseases/pathology , Brain/metabolism , Gene Expression Regulation/genetics , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/complications , Huntington Disease/genetics , Neurodegenerative Diseases/complications , Peptides/genetics , RNA-Binding Proteins/metabolism
4.
Neuropathol Appl Neurobiol ; 42(2): 153-66, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26095752

ABSTRACT

AIMS: Polyglutamine (polyQ) diseases are characterized by the expansion of a polymorphic glutamine sequence in disease-specific proteins and exhibit aggregation of these proteins. This is combated by the cellular protein quality control (PQC) system, consisting of chaperone-mediated refolding as well as proteasomal and lysosomal degradation pathways. Our recent study in the polyQ disease spinocerebellar ataxia type 3 (SCA3) suggested a distinct pattern of protein aggregation and PQC dysregulation. METHODS: To corroborate these findings we have investigated immunohistochemically stained 5 µm sections from different brain areas of Huntington's disease (HD) and SCA3 patients. RESULTS: Irrespective of disease and brain region, we observed peri- and intranuclear polyQ protein aggregates. A subset of neurones with intranuclear inclusions bodies exhibited signs of proteasomal dysfunction, up-regulation of HSPA1A and re-distribution of DNAJB1. The extent of the observed effects varied depending on brain area and disease protein. CONCLUSIONS: Our results suggest a common sequence, in which formation of cytoplasmic and nuclear inclusions precede proteasomal impairment and induction of the cellular stress response. Clearly, impairment of the PQC is not the primary cause for inclusion formation, but rather a consequence that might contribute to neuronal dysfunction and death. Notably, the inclusion pathology is not directly correlated to the severity of the degeneration in different areas, implying that different populations of neurones respond to polyQ aggregation with varying efficacy and that protein aggregation outside the neuronal perikaryon (e.g. axonal aggregates) or other effects of polyQ aggregation, which are more difficult to visualize, may contribute to neurodegeneration.


Subject(s)
Brain/pathology , Huntington Disease/pathology , Machado-Joseph Disease/pathology , Peptides/metabolism , Protein Aggregation, Pathological/pathology , Adult , Aged , Aged, 80 and over , Brain/metabolism , Female , Humans , Huntington Disease/metabolism , Immunohistochemistry , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Machado-Joseph Disease/metabolism , Male , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Neurons/pathology , Protein Aggregation, Pathological/metabolism
5.
Neuropathol Appl Neurobiol ; 39(6): 634-43, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23363055

ABSTRACT

AIMS: Spinocerebellar ataxia type 2 (SCA2) belongs to the CAG repeat or polyglutamine diseases. Along with a large variety of motor, behavioural and neuropsychological symptoms the clinical picture of patients suffering from this autosomal dominantly inherited ataxia may also include deficits of attention, impairments of memory, as well as frontal-executive and visuospatial dysfunctions. As the possible morphological correlates of these cognitive SCA2 deficits are unclear we examined the cholinergic basal forebrain nuclei, which are believed to be crucial for several aspects of normal cognition and may contribute to impairments of cognitive functions under pathological conditions. METHODS: We studied pigment-Nissl-stained thick tissue sections through the cholinergic basal forebrain nuclei (that is, medial septal nucleus, nuclei of the diagonal band of Broca, basal nucleus of Meynert) of four clinically diagnosed and genetically confirmed SCA2 patients and of 13 control individuals according to the pathoanatomical approach. The pathoanatomical results were confirmed by additional quantitative investigations of these nuclei in the SCA2 patients and four age- and gender-matched controls. RESULTS: Our study revealed a severe and consistent neuronal loss in all of the cholinergic basal forebrain nuclei (medial septal nucleus: 72%; vertical nucleus of the diagonal band of Broca: 74%; horizontal limb of the diagonal band of Broca: 72%; basal nucleus of Meynert: 86%) of the SCA2 patients studied. Damage to the basal forebrain nuclei was associated with everyday relevant cognitive deficits only in our SCA2 patient with an additional Braak and Braak stage V Alzheimer's disease (AD)-related tau pathology. CONCLUSIONS: The findings of the present study: (1) indicate that the mutation and pathological process underlying SCA2 play a causative role for this severe degeneration of the cholinergic basal forebrain nuclei and (2) may suggest that degeneration of the cholinergic basal forebrain nuclei per se is not sufficient to cause profound and global dementia detrimental to everyday practice and activities of daily living.


Subject(s)
Basal Nucleus of Meynert/pathology , Cholinergic Neurons/pathology , Diagonal Band of Broca/pathology , Septal Nuclei/pathology , Spinocerebellar Ataxias/pathology , Adult , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Female , Humans , Male , Middle Aged , Young Adult
6.
Neuropathol Appl Neurobiol ; 38(7): 665-80, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22309224

ABSTRACT

AIMS: Spinocerebellar ataxia type 1 (SCA1) represents the first molecular genetically characterized autosomal dominantly inherited cerebellar ataxia and is assigned to the CAG-repeat or polyglutamine diseases. Owing to limited knowledge about SCA1 neuropathology, appropriate pathoanatomical correlates of a large variety of SCA1 disease symptoms are missing and the neuropathological basis for further morphological and experimental SCA1 studies is still fragmentary. METHODS: In the present study, we investigated for the first time serial tissue sections through the complete brains of clinically diagnosed and genetically confirmed SCA1 patients. RESULTS: Brain damage in the three SCA1 patients studied went beyond the well-known brain predilection sites of the underlying pathological process. Along with neuronal loss in the primary motor cortex, it included widespread degeneration of gray components of the basal forebrain, thalamus, brainstem and cerebellum, as well as of white matter components in the cerebellum and brainstem. It involved the motor cerebellothalamocortical and basal ganglia-thalamocortical circuits, the visual, auditory, somatosensory, oculomotor, vestibular, ingestion-related, precerebellar, basal forebrain cholinergic and midbrain dopaminergic systems. CONCLUSIONS: These findings show for the first time that the extent and severity of brain damage in SCA1 is very similar to that of clinically closely related spinocerebellar ataxias (that is, SCA2, SCA3 and SCA7). They offer suitable explanations for poorly understood SCA1 disease symptoms and will facilitate the interpretation of further morphological and experimental SCA1 studies.


Subject(s)
Brain/pathology , Nerve Degeneration/pathology , Spinocerebellar Ataxias/pathology , Adult , Aged , Female , Humans , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Peptides/metabolism
7.
Neuropathol Appl Neurobiol ; 38(1): 39-53, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21696420

ABSTRACT

AIMS: HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS: Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS: In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS: We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.


Subject(s)
Adaptor Proteins, Signal Transducing/biosynthesis , Astrocytes/metabolism , Heat-Shock Proteins/biosynthesis , Neurodegenerative Diseases/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Apoptosis Regulatory Proteins , Blotting, Western , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Molecular Chaperones , Up-Regulation
8.
Cerebellum ; 11(3): 749-60, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22198871

ABSTRACT

The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.


Subject(s)
Cerebellum/pathology , Nerve Degeneration/pathology , Spinocerebellar Ataxias/pathology , Adult , Aged , Aged, 80 and over , Alleles , Atrophy , Cerebellar Cortex/pathology , Cerebellar Nuclei/pathology , Female , Humans , Male , Middle Aged , Myelin Sheath/pathology , Purkinje Cells/pathology , Spinocerebellar Ataxias/genetics , Tomography, X-Ray Computed , Young Adult
9.
Neuropathol Appl Neurobiol ; 38(6): 548-58, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21916928

ABSTRACT

AIMS: A characteristic of polyglutamine diseases is the increased propensity of disease proteins to aggregate, which is thought to be a major contributing factor to the underlying neurodegeneration. Healthy cells contain mechanisms for handling protein damage, the protein quality control, which must be impaired or inefficient to permit proteotoxicity under pathological conditions. METHODS: We used a quantitative analysis of immunohistochemistry of the pons of eight patients with the polyglutamine disorder spinocerebellar ataxia type 3. We employed the anti-polyglutamine antibody 1C2, antibodies against p62 that is involved in delivering ubiquitinated protein aggregates to autophagosomes, antibodies against the chaperones HSPA1A and DNAJB1 and the proteasomal stress marker UBB⁺¹. RESULTS: The 1C2 antibody stained neuronal nuclear inclusions (NNIs), diffuse nuclear staining (DNS), granular cytoplasmic staining (GCS) and combinations, with reproducible distribution. P62 always co-localized with 1C2 in NNI. DNS and GCS co-stained with a lower frequency. UBB⁺¹ was present in a subset of neurones with NNI. A subset of UBB⁺¹-containing neurones displayed increased levels of HSPA1A, while DNAJB1 was sequestered into the NNI. CONCLUSION: Based on our results, we propose a model for the aggregation-associated pathology of spinocerebellar ataxia type 3: GCS and DNS aggregation likely represents early stages of pathology, which progresses towards formation of p62-positive NNI. A fraction of NNI exhibits UBB⁺¹ staining, implying proteasomal overload at a later stage. Subsequently, the stress-inducible HSPA1A is elevated while DNAJB1 is recruited into NNIs. This indicates that the stress response is only induced late when all endogenous protein quality control systems have failed.


Subject(s)
Machado-Joseph Disease/metabolism , Neurons/metabolism , Pons/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Aged, 80 and over , Female , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunohistochemistry , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , Machado-Joseph Disease/pathology , Male , Middle Aged , Neurons/pathology , Pons/pathology , Sequestosome-1 Protein , Ubiquitin/metabolism
10.
Clin Neuropathol ; 28(5): 344-9, 2009.
Article in English | MEDLINE | ID: mdl-19788049

ABSTRACT

Neuronal protein aggregates are considered as pathological hallmarks of various human neurodegenerative diseases, including the so-called CAG-repeat disorders, such as spinocerebellar ataxia Type 6 (SCA6). Since the immunocytochemical findings of an initial post-mortem study using a specific antibody against the disease protein of SCA6 (i.e., pathologically altered alpha-1A subunit of the P/Q type voltage-dependent calcium channel, CACNA1A) have not been confirmed so far, the occurrence and central nervous system distribution of neuronal protein aggregates in SCA6 is still a matter of debate. Owing to the fact that the antibody against the pathologically altered CACNA1A is not commercially available, we decided to apply a recently generated p62 antibody on brain tissue from two clinically diagnosed and genetically confirmed SCA6 patients. Application of this p62 antibody revealed numerous cytoplasmic neuronal inclusions in the degenerated cerebellar dentate nucleus and inferior olive of both SCA6 patients studied, whereby a subset of these aggregates were also ubiquitin-immunopositive. In view of the known role of p62 in protein degradation as well as aggresome/sequestosome formation, the p62 aggregate formation observed in the present study suggests that SCA6 not only is associated with an impairment of the calcium channel function and an elongated polyglutamine stretch in CACNA1A, but also with a defective protein handling by the protein quality control system.


Subject(s)
Adaptor Proteins, Signal Transducing/analysis , Cerebellar Nuclei/chemistry , Inclusion Bodies/chemistry , Neurons/chemistry , Olivary Nucleus/chemistry , Spinocerebellar Ataxias/metabolism , Adaptor Proteins, Signal Transducing/immunology , Aged , Aged, 80 and over , Antibodies/immunology , Cell Count , Cerebellar Nuclei/pathology , Female , Humans , Immunohistochemistry , Inclusion Bodies/pathology , Machado-Joseph Disease/metabolism , Male , Middle Aged , Neurons/pathology , Olivary Nucleus/pathology , Purkinje Cells/chemistry , Purkinje Cells/pathology , Sequestosome-1 Protein , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Ubiquitin/metabolism
11.
Neuropathol Appl Neurobiol ; 35(4): 406-16, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19508444

ABSTRACT

AIMS: Alzheimer's disease (AD) is a progressive and irreversible disease. There is strong evidence that the progression of the phospho-tau neurofibrillary cytoskeletal changes, rather than the beta-amyloid burden, is crucial in determining the severity of the dementia in AD. The Braak and Braak staging system (BB) focuses mainly on the cortical cytoskeletal pathology and classifies this progressive pathology into six stages, spreading from the transentorhinal region to primary cortices. Although it is reported elsewhere that the midbrain's dorsal raphe nucleus (DR), which is connected with those areas of the cerebral cortex undergoing early changes during BB I and II, exhibits AD-related cytoskeletal pathology, this nucleus has not been considered by the BB. METHODS: To determine during which BB stage and how frequently the DR is affected by AD-related neurofibrillary changes, we studied the DR of 118 well-characterized individuals of the Brain Bank of the Brazilian Aging Brain Study Group categorized according to the BB. Thirty-eight of these individuals were staged as BB = 0, and 80 as BB >or= 1. RESULTS: In all of the BB >or= 1 individuals (cortical neurofibrillary changes were present at least in the transentorhinal region) and in more than 1/5 of the BB = 0 individuals neurofibrillary changes were detected in the supratrochlear subnucleus of the DR. CONCLUSIONS: These observations: (i) support the hypothesis of transneuronal spread of neurofibrillary changes from the DR to its interconnected cortical brain areas; and (ii) indicate that the supratrochlear subnucleus of the DR is affected by neurofibrillary changes before the transentorhinal cortex during the disease process underlying AD.


Subject(s)
Alzheimer Disease/pathology , Entorhinal Cortex/pathology , Neurofibrillary Tangles/pathology , Raphe Nuclei/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/epidemiology , Alzheimer Disease/metabolism , Depressive Disorder, Major/epidemiology , Disease Progression , Education , Entorhinal Cortex/cytology , Entorhinal Cortex/metabolism , Female , Humans , Male , Middle Aged , Neurofibrillary Tangles/metabolism , Phosphorylation , Raphe Nuclei/cytology , Raphe Nuclei/metabolism , Severity of Illness Index
12.
Neuropathol Appl Neurobiol ; 35(5): 515-27, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19207264

ABSTRACT

AIMS: Spinocerebellar ataxia type 6 (SCA6) is a late onset autosomal dominantly inherited ataxic disorder, which belongs to the group of CAG repeat, or polyglutamine, diseases. Although, it has long been regarded as a 'pure' cerebellar disease, recent clinical studies have demonstrated disease signs challenging the view that neurodegeneration in SCA6 is confined to the well-known lesions in the cerebellum and inferior olive. METHODS: We performed a systematic pathoanatomical study throughout the brains of three clinically diagnosed and genetically confirmed SCA6 patients. RESULTS: This study confirmed that brain damage in SCA6 goes beyond the known brain predilection sites. In all of the SCA6 patients studied loss of cerebellar Purkinje cells and absence of morphologically intact layer V giant Betz pyramidal cells in the primary motor cortex, as well as widespread degeneration of brainstem nuclei was present. Additional damage to the deep cerebellar nuclei was observed in two of three SCA6 patients. CONCLUSIONS: In view of the known functional role of affected central nervous grey components it is likely that their degeneration at least in part is responsible for the occurrence of a variety of SCA6 disease symptoms.


Subject(s)
Brain/pathology , Nerve Degeneration/pathology , Spinocerebellar Ataxias/pathology , Aged , Autopsy , Female , Humans , Male , Pedigree , Spinocerebellar Ataxias/genetics
13.
Ann Anat ; 191(2): 203-11, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19230631

ABSTRACT

The hereditary spastic paraplegias (HSP) are a heterogeneous group of familial movement disorders sharing progressive spastic paraplegia as a common disease sign. In the present study, we performed the first pathoanatomical investigation of the central nervous degeneration of a female patient with a complicated HSP form who suffered from progressive spastic paraplegia, dysarthria, emotional symptoms, cognitive decline and a variety of additional neuropsychological deficits. This pathoanatomical investigation revealed in addition to loss of layer V Betz pyramidal cells in the primary motor cortex, widespread cerebellar neurodegeneration (i.e., loss of Purkinje cells and neuronal loss in the deep cerebellar nuclei), extensive and severe neuronal loss in a large number of thalamic nuclei, involvement of some brainstem nuclei, as well as damage to descending (i.e., lateral and ventral corticospinal tracts) and ascending (i.e., dorsal and ventral spinocerebellar tracts, gracile fascicle) fiber tracts. In view of their known functional role, damage to these central nervous gray and white matter components offers explanations for the patient's pyramidal signs, her cerebellar, psychiatric and neuropsychological disease symptoms.


Subject(s)
Cerebellum/pathology , Spastic Paraplegia, Hereditary/pathology , Thalamus/pathology , Age of Onset , Aged , Cadaver , Disease Progression , Europe/epidemiology , Female , Humans , Male , Middle Aged , Postmortem Changes , Prevalence , Spastic Paraplegia, Hereditary/epidemiology , Spinocerebellar Degenerations/pathology
14.
Neuropathol Appl Neurobiol ; 35(1): 4-15, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19187058

ABSTRACT

Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in Huntington's disease (HD) patients. Although some of these oculomotor symptoms point to an involvement of the premotor oculomotor brainstem network in HD, no systematic analysis of this functional system has yet been performed in brains of HD patients. Therefore, its exact contribution to oculomotor symptoms in HD remains unclear. A possible strategy to clarify this issue is the use of unconventional 100-microm-thick serial tissue sections stained for Nissl substance and lipofuscin pigment (Nissl-pigment stain according to Braak). This technique makes it possible to identify the known nuclei of the premotor oculomotor brainstem network and to study their possible involvement in the neurodegenerative process. Studies applying this morphological approach and using the current knowledge regarding the functional neuroanatomy of this human premotor oculomotor brainstem network will help to elucidate the anatomical basis of the large spectrum of oculomotor dysfunctions that are observed in HD patients. This knowledge may aid clinicians in the diagnosis and monitoring of the disease.


Subject(s)
Brain Stem/physiology , Brain Stem/physiopathology , Eye Movements/physiology , Frontal Lobe/physiopathology , Huntington Disease/physiopathology , Neural Pathways/physiopathology , Brain Stem/pathology , Frontal Lobe/pathology , Humans , Huntington Disease/pathology , Neural Pathways/pathology , Vision, Binocular
15.
Neuropathol Appl Neurobiol ; 34(5): 479-91, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18221259

ABSTRACT

AIMS: The spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7) are clinically characterized by progressive and severe ataxic symptoms, dysarthria, dysphagia, oculomotor impairments, pyramidal and extrapyramidal manifestations and sensory deficits. Although recent clinical studies reported additional disease signs suggesting involvement of the brainstem auditory system, this has never been studied in detail in SCA2, SCA3 or SCA7. METHODS: We performed a detailed pathoanatomical investigation of unconventionally thick tissue sections through the auditory brainstem nuclei (that is, nucleus of the inferior colliculus, nuclei of the lateral lemniscus, superior olive, cochlear nuclei) and auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body, dorsal acoustic stria, cochlear portion of the vestibulocochlear nerve) of clinically diagnosed and genetically confirmed SCA2, SCA3 and SCA7 patients. RESULTS: Examination of unconventionally thick serial brainstem sections stained for lipofuscin pigment and Nissl material revealed a consistent and widespread involvement of the auditory brainstem nuclei in the SCA2, SCA3 and SCA7 patients studied. Serial brainstem tissue sections stained for myelin showed loss of myelinated fibres in two of the auditory brainstem fibre tracts (that is, lateral lemniscus, trapezoid body) in a subset of patients. CONCLUSIONS: The involvement of the auditory brainstem system offers plausible explanations for the auditory impairments detected in some of our and other SCA2, SCA3 and SCA7 patients upon bedside examination or neurophysiological investigation. However, further clinical studies are required to resolve the striking discrepancy between the consistent involvement of the brainstem auditory system observed in this study and the comparatively low frequency of reported auditory impairments in SCA2, SCA3 and SCA7 patients.


Subject(s)
Brain Stem/pathology , Spinocerebellar Ataxias/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nerve Degeneration/pathology
16.
Neuropathol Appl Neurobiol ; 34(2): 155-68, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17971076

ABSTRACT

Spinocerebellar ataxia type 7 (SCA7) represents a rare and severe autosomal dominantly inherited ataxic disorder and is among the known CAG-repeat, or polyglutamine, diseases. In contrast to other currently known autosomal dominantly inherited ataxic disorders, SCA7 may manifest itself with different clinical courses. Because the degenerative changes evolving during these different clinical courses are not well known, many neurological disease symptoms still are unexplained. We performed an initial pathoanatomical study on unconventional thick tissue sections of the brain of a clinically diagnosed and genetically confirmed adult-onset SCA7 patient with progressive visual impairments. In this patient we observed loss of myelinated fibres in distinct central nervous fibre tracts, and widespread degeneration of the cerebellum, telencephalon, diencephalon and lower brainstem. These degenerative changes offer appropriate explanations for a variety of less-understood neurological symptoms in adult-onset SCA7 patients with visual impairments: gait, stance and limb ataxia, falls, dysarthria, dysphagia, pyramidal signs, Parkinsonian features, writing problems, impairments of saccades and smooth pursuits, altered pupillary functions, somatosensory deficits, auditory deficits and mental impairments.


Subject(s)
Brain/pathology , Retina/pathology , Spinocerebellar Ataxias/pathology , Spinocerebellar Ataxias/physiopathology , Vision Disorders/etiology , Adult , Age of Onset , Aged , Ataxin-7 , Brain/metabolism , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Pedigree , Retina/metabolism , Spinocerebellar Ataxias/complications
17.
Neurology ; 67(11): 1966-72, 2006 Dec 12.
Article in English | MEDLINE | ID: mdl-17159102

ABSTRACT

BACKGROUND: Autosomal dominant spinocerebellar ataxia type 2 (SCA2) bears clinical and neuropathologic similarities to sporadic multisystem atrophy (MSA) or Parkinson disease, in which sleep pathology is well documented. However, those clinical entities have a marked variability of the reported sleep disturbances, and their etiology is heterogeneous. In contrast, the study of SCA2 provides an opportunity to examine a molecularly homogeneous patient group, in which disease stages can be defined not only based on disease duration and ataxia scores, but also with regard to modulatory effects of mutation size. OBJECTIVE: To examine the presence and progression of sleep pathology in SCA2. METHODS: We analyzed eight patients with disease durations of 3 to 31 years, all with medium size SCA2 expansions (CAG 38 to 49), using clinical scores, sleep interviews, and video-polysomnography (VPSG) recordings. RESULTS: Almost all patients reported good subjective sleep quality and negated incidents of REM behavior disorder (RBD). At early disease stages, however, REM without atonia in four patients' VPSG suggested subclinical RBD. This was accompanied by a consistent reduction of REM density. In three patients at later SCA2 stages, REM sleep was undetectable, whereas slow wave sleep (SWS) was markedly increased at the cost of light sleep. Periodic leg movements, apnea, or hypopnea were not prominent. CONCLUSIONS: Progressive loss of dream recall in spinocerebellar ataxia type 2 was found and correlated with stages of REM more than non-REM pathology in video-polysomnography. These stages correspond to the progressive atrophy from the pons, nigrostriatal projection, and locus ceruleus to the thalamus.


Subject(s)
Sleep Stages/physiology , Sleep Wake Disorders/physiopathology , Spinocerebellar Ataxias/physiopathology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Mutation , Polysomnography , Sleep Wake Disorders/complications , Sleep Wake Disorders/genetics , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/genetics
18.
Neuropathol Appl Neurobiol ; 32(6): 635-49, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17083478

ABSTRACT

Dysphagia, which can lead to nutritional deficiencies, weight loss and dehydration, represents a risk factor for aspiration pneumonia. Although clinical studies have reported the occurrence of dysphagia in patients with spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3), type 6 (SCA6) and type 7 (SCA7), there are neither detailed clinical records concerning the kind of ingestive malfunctions which contribute to dysphagia nor systematic pathoanatomical studies of brainstem regions involved in the ingestive process. In the present study we performed a systematic post mortem study on thick serial tissue sections through the ingestion-related brainstem nuclei of 12 dysphagic patients who suffered from clinically diagnosed and genetically confirmed spinocerebellar ataxias assigned to the CAG-repeat or polyglutamine diseases (two SCA2, seven SCA3, one SCA6 and two SCA7 patients) and evaluated their medical records. Upon pathoanatomical examination in all of the SCA2, SCA3, SCA6 and SCA7 patients, a widespread neurodegeneration of the brainstem nuclei involved in the ingestive process was found. The clinical records revealed that all of the SCA patients were diagnosed with progressive dysphagia and showed dysfunctions detrimental to the preparatory phase of the ingestive process, as well as the lingual, pharyngeal and oesophageal phases of swallowing. The vast majority of the SCA patients suffered from aspiration pneumonia, which was the most frequent cause of death in our sample. The findings of the present study suggest (i) that dysphagia in SCA2, SCA3, SCA6 and SCA7 patients may be associated with widespread neurodegeneration of ingestion-related brainstem nuclei; (ii) that dysphagic SCA2, SCA3, SCA6 and SCA7 patients may suffer from dysfunctions detrimental to all phases of the ingestive process; and (iii) that rehabilitative swallow therapy which takes specific functional consequences of the underlying brainstem lesions into account might be helpful in preventing aspiration pneumonia, weight loss and dehydration in SCA2, SCA3, SCA6 and SCA7 patients.


Subject(s)
Brain Stem/pathology , Deglutition Disorders/complications , Nerve Degeneration/pathology , Spinocerebellar Ataxias/complications , Adult , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Male , Middle Aged
19.
J Neural Transm Suppl ; (70): 89-97, 2006.
Article in English | MEDLINE | ID: mdl-17017514

ABSTRACT

Parkinson's disease (PD) is a multisystem disorder in which predisposed neuronal types in specific regions of the human peripheral, enteric, and central nervous systems become progressively involved. A staging procedure for the PD-related inclusion body pathology (i.e., Lewy neurites and Lewy bodies) in the brain proposes that the pathological process begins at two sites and progresses in a topographically predictable sequence in 6 stages. During stages 1-2, the inclusion body pathology remains confined to the medulla oblongata, pontine tegmentum, and anterior olfactory structures. In stages 3-4, the basal mid- and forebrain become the focus of the pathology and the illness reaches its symptomatic phase. In the final stages 5-6, the pathological process is seen in the association areas and primary fields of the neocortex. To date, we have staged a total of 301 autopsy cases, including 106 cases with incidental pathology and 176 clinically diagnosed PD cases. In addition, 163 age-matched controls were examined. 19 of the 301 cases with PD-related pathology displayed a pathological distribution pattern of Lewy neurites and Lewy bodies that diverged from the staging scheme described above. In these cases, olfactory structures and the amygdala were predominantly involved in the virtual absence of brain stem pathology. Most of the divergent cases (17/19) had advanced concomitant Alzheimer's disease-related neurofibrillary changes (stages IV-VI).


Subject(s)
Parkinson Disease/complications , Parkinson Disease/pathology , Animals , Brain/pathology , Disease Progression , Humans , Neurofibrillary Tangles/pathology , alpha-Synuclein/metabolism
20.
Neurology ; 67(3): 519-21, 2006 Aug 08.
Article in English | MEDLINE | ID: mdl-16894121

ABSTRACT

Horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the ROBO3 gene, critical for the crossing of long ascending medial lemniscal and descending corticospinal tracts in the medulla. Diffusion tensor imaging in a patient with HGGPS revealed the absence of major pontine crossing fiber tracts and no decussation of the superior cerebellar peduncles. Mutations in the ROBO3 gene lead to a widespread lack of crossing fibers throughout the brainstem.


Subject(s)
Brain Diseases/genetics , Brain Stem/pathology , Genetic Predisposition to Disease , Receptors, Immunologic/genetics , Adult , Brain Diseases/pathology , DNA Mutational Analysis , Diffusion Magnetic Resonance Imaging , Family Health , Female , Humans , Male , Mutation , Pedigree , Receptors, Cell Surface , Scoliosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...