Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Evolution ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39290094

ABSTRACT

Although species evolve in response to many intrinsic and extrinsic factors, frequently one factor has a dominating influence on a given organ system. In this context, mouthpart shape and function are thought to correlate strongly with dietary niche and this was advocated for decades, e.g., for insects. Orthoptera (grasshoppers, crickets, and allies) are a prominent case in this respect because mandible shape has been even used to predict feeding preferences. Here, we analysed mandible shape, force transmission efficiency, and their potential correlation with dietary categories in a phylogenetic framework for 153 extant Orthoptera. The mechanical advantage profile was used as a descriptor of gnathal edge shape and bite force transmission efficiency in order to understand how mandible shape is linked to biting efficiency and diet, and how these traits are influenced by phylogeny and allometry. Results show that mandible shape in fact is a poor predictor of feeding ecology and phylogenetic history has a strong influence on gnathal edge shape. Being ancestrally phytophagous, Orthoptera evolved in an environment with food sources being always abundant so that selective pressures leading to more specialized mouthpart shapes and force transmission efficiencies were low.

2.
Proc Biol Sci ; 288(1953): 20210616, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34130499

ABSTRACT

Most animals undergo ecological niche shifts between distinct life phases, but such shifts can result in adaptive conflicts of phenotypic traits. Metamorphosis can reduce these conflicts by breaking up trait correlations, allowing each life phase to independently adapt to its ecological niche. This process is called adaptive decoupling. It is, however, yet unknown to what extent adaptive decoupling is realized on a macroevolutionary scale in hemimetabolous insects and if the degree of adaptive decoupling is correlated with the strength of ontogenetic niche shifts. It is also unclear whether the degree of adaptive decoupling is correlated with phenotypic disparity. Here, we quantify nymphal and adult trait correlations in 219 species across the whole phylogeny of earwigs and stoneflies to test whether juvenile and adult traits are decoupled from each other. We demonstrate that adult head morphology is largely driven by nymphal ecology, and that adult head shape disparity has increased with stronger ontogenetic niche shifts in some stonefly lineages. Our findings implicate that the hemimetabolan metamorphosis in earwigs and stoneflies does not allow for high degrees of adaptive decoupling, and that high phenotypic disparity can even be realized when the evolution of distinct life phases is coupled.


Subject(s)
Biological Evolution , Insecta , Animals , Ecology , Metamorphosis, Biological , Phylogeny
3.
J Morphol ; 281(7): 754-764, 2020 07.
Article in English | MEDLINE | ID: mdl-32427377

ABSTRACT

Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237-238) form the sister taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited ability of color change, a rather dull coloration, and a nonprehensile tail assisting locomotion in the leaf litter on the forest floor. Most Brookesia species can readily be recognized by peculiar spiky dorsolateral projections ("Rückensäge"), which are caused by an aberrant vertebral structure and might function as body armor to prevent predation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on the lateral flanks and extremities, thereby considerably enhancing the overall armored appearance. Such structures are exceptional within the Chamaeleonidae and despite an appreciable interest in the integument of chameleons in general, the morphology of these integumentary elements remains shrouded in mystery. Using various conventional and petrographic histological approaches combined with µCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores that are embedded within the dermis. Based on this, they consequently can be interpreted as osteoderms, which to the best of our knowledge is the first record of such for the entire Chamaeleonidae and only the second one for the entire clade Iguania. The combination of certain aspects of tissue composition (especially the presence of large, interconnected, and marrow-filled cavities) together with the precise location within the dermis (being completely enveloped by the stratum superficiale), however, discriminate the osteoderms of B. perarmata from those known for all other lepidosaurs.


Subject(s)
Bone and Bones/anatomy & histology , Bone and Bones/diagnostic imaging , Lizards/anatomy & histology , Skin/anatomy & histology , Skin/diagnostic imaging , X-Ray Microtomography , Animals , Imaging, Three-Dimensional , Spine/anatomy & histology , Spine/cytology
4.
J Anat ; 235(2): 379-385, 2019 08.
Article in English | MEDLINE | ID: mdl-31062353

ABSTRACT

Micro-computed tomography (µCT) has become standard in the biological sciences to reconstruct, display and analyse 3D models of all kinds of organisms. However, it is often impossible to capture fine details of the surface and the internal anatomy at the same time with sufficient contrast. Here we introduce a new approach for the selective contrast-enhancement of integumentary surface structures. The method relies on conventional and readily available sputter coaters to cover the entire sample with a thin layer of gold atoms. This approach proved successful on a diverse array of plants and animals. On average, we achieved a 14.48-fold gain of surface contrast (ranging from 2.42-fold to 86.93-fold) compared with untreated specimens. Even X-ray-transparent samples such as spider silk became accessible via µCT. This selective contrast-enhancement, makes it possible to digitally reconstruct fine surface structures with low absorbance while the tissue-dependent grey value resolution of the inner anatomy is maintained and remains fully visualisable. The methodology is suited for a broad scientific application across biology and other sciences employing (µ)CT, as well as educative and public outreach purposes.


Subject(s)
Gold , Integumentary System/diagnostic imaging , X-Ray Microtomography/methods , Animals , Insecta , Seeds
5.
Article in English | MEDLINE | ID: mdl-30978469

ABSTRACT

Vibrational communication is common in insects and often includes signals with prominent frequency components below 200 Hz, but the sensory adaptations for their detection are scarcely investigated. We performed an integrative study of the subgenual organ complex in Troglophilus cave crickets (Orthoptera: Rhaphidophoridae), a mechanosensory system of three scolopidial organs in the proximal tibia, for mechanical, anatomical and physiological aspects revealing matches to low frequency vibration detection. Microcomputed tomography shows that a part of the subgenual organ sensilla and especially the accessory organ posteriorly in this complex are placed closely underneath the cuticle, a position suited to evoke responses to low-frequency vibration via changes in the cuticular strain. Laser-Doppler vibrometry shows that in a narrow low-frequency range the posterior tibial surface reacts stronger to low frequency sinusoidal vibrations than the anterior tibial surface. This finding suggests that the posterior location of sensilla in tight connection to the cuticle, especially in the accessory organ, is adapted to improve detectability of low-frequency vibration signals. By electrophysiological recordings we identify a scolopidial receptor type tuned to 50-300 Hz vibrations, which projects into the central mechanosensory region specialised for processing low-frequency vibratory inputs, and most likely originates from the accessory organ or the posterior subgenual organ. Our findings contribute to understanding of the mechanical and neuronal basis of low-frequency vibration detection in insect legs and their highly differentiated sensory systems.


Subject(s)
Gryllidae/physiology , Mechanotransduction, Cellular/physiology , Vibration , Animals , Biological Evolution , Gryllidae/anatomy & histology , X-Ray Microtomography
6.
Beilstein J Nanotechnol ; 9: 3039-3047, 2018.
Article in English | MEDLINE | ID: mdl-30591851

ABSTRACT

In technical systems, static pressure and pressure changes are usually measured with piezoelectric materials or solid membranes. In this paper, we suggest a new biomimetic principle based on thin air layers that can be used to measure underwater pressure changes. Submerged backswimmers (Notonecta sp.) are well known for their ability to retain air layers on the surface of their forewings (hemelytra). While analyzing the hemelytra of Notonecta, we found that the air layer on the hemelytra, in combination with various types of mechanosensitive hairs (clubs and pins), most likely serve a sensory function. We suggest that this predatory aquatic insect can detect pressure changes and water movements by sensing volume changes of the air layer under water. In the present study, we used a variety of microscopy techniques to investigate the fine structure of the hemelytra. Furthermore, we provide a biomimetic proof of principle to validate our hypothesis. The suggested sensory principle has never been documented before and is not only of interest for sensory biologists but can also be used for the development of highly sensitive underwater acoustic or seismographic sensory systems.

8.
Sci Rep ; 6: 34352, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27698490

ABSTRACT

The life-like fidelity of organisms captured in amber is unique among all kinds of fossilization and represents an invaluable source for different fields of palaeontological and biological research. One of the most challenging aspects in amber research is the study of traits related to behaviour. Here, indirect evidence for pheromone-mediated mating behaviour is recorded from a biting midge (Ceratopogonidae) in 54 million-year-old Indian amber. Camptopterohelea odora n. sp. exhibits a complex, pocket shaped structure on the wings, which resembles the wing folds of certain moth flies (Diptera: Psychodidae) and scent organs that are only known from butterflies and moths (Lepidoptera) so far. Our studies suggests that pheromone releasing structures on the wings have evolved independently in biting midges and might be much more widespread in fossil as well as modern insects than known so far.


Subject(s)
Amber , Diptera/physiology , Fossils , Pheromones/metabolism , Animals , Female , Male , Sexual Behavior, Animal , Wings, Animal/anatomy & histology
9.
Ecol Evol ; 6(20): 7367-7374, 2016 10.
Article in English | MEDLINE | ID: mdl-28725404

ABSTRACT

Males often fight with rival males for access to females. However, some males display nonfighting tactics such as sneaking, satellite behavior, or female mimicking. When these mating tactics comprise a conditional strategy, they are often thought to be explained by resource holding potential (RHP), that is, nonfighting tactics are displayed by less competitive males who are more likely to lose a fight. The alternative mating tactics, however, can also be explained by life-history theory, which predicts that young males avoid fighting, regardless of their RHP, if it pays off to wait for future reproduction. Here, we test whether the sneaking tactic displayed by young males of the two-spotted spider mite can be explained by life-history theory. We tested whether young sneaker males survive longer than young fighter males after a bout of mild or strong competition with old fighter males. We also investigated whether old males have a more protective outer skin-a possible proxy for RHP-by measuring cuticle hardness and elasticity using nanoindentation. We found that young sneaker males survived longer than young fighter males after mild male competition. This difference was not found after strong male competition, which suggests that induction of sneaking tactic is affected by male density. Hardness and elasticity of the skin did not vary with male age. Given that earlier work could also not detect morphometric differences between fighter and sneaker males, we conclude that there is no apparent increase in RHP with age in the mite and age-dependent male mating tactics in the mite can be explained only by life-history theory. Because it is likely that fighting incurs a survival cost, age-dependent alternative mating tactics may be explained by life-history theory in many species when reproduction of old males is a significant factor in fitness.

10.
Proc Biol Sci ; 282(1812): 20151033, 2015 08 07.
Article in English | MEDLINE | ID: mdl-26203002

ABSTRACT

In butterflies, bees, flies and true bugs specific mouthparts are in close contact or even fused to enable piercing, sucking or sponging of particular food sources. The common phenomenon behind these mouthpart types is a complex composed of several consecutive mouthparts which structurally interact during food uptake. The single mouthparts are thus only functional in conjunction with other adjacent mouthparts, which is fundamentally different to biting-chewing. It is, however, unclear when structural mouthpart interaction (SMI) evolved since this principle obviously occurred multiple times independently in several extant and extinct winged insect groups. Here, we report a new type of SMI in two of the earliest wingless hexapod lineages--Diplura and Collembola. We found that the mandible and maxilla interact with each other via an articulatory stud at the dorsal side of the maxillary stipes, and they are furthermore supported by structures of the hypopharynx and head capsule. These interactions are crucial stabilizing elements during food uptake. The presence of SMI in these ancestrally wingless insects, and its absence in those crustacean groups probably ancestral to insects, indicates that SMI is a groundplan apomorphy of insects. Our results thus contradict the currently established view of insect mouthpart evolution that biting-chewing mouthparts without any form of SMI are the ancestral configuration. Furthermore, SMIs occur in the earliest insects in a high anatomical variety. SMIs in stemgroup representatives of insects may have triggered efficient exploitation and fast adaptation to new terrestrial food sources much earlier than previously supposed.


Subject(s)
Arthropods/anatomy & histology , Animals , Arthropods/physiology , Insecta/anatomy & histology , Insecta/physiology , Mouth/anatomy & histology , Mouth/physiology , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL