Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37376249

ABSTRACT

Climate change, access, and monopolies to raw material sources as well as politically motivated trade barriers are among the factors responsible for a shortage of raw materials. In the plastics industry, resource conservation can be achieved by substituting commercially available petrochemical-based plastics with components made from renewable raw materials. Innovation potentials are often not used due to a lack of information on the use of bio-based materials, efficient processing methods, and product technologies or because the costs for new developments are too high. In this context, the use of renewable resources such as fiber-reinforced polymeric composites based on plants has become an important criterion for the development and production of components and products in all industrial sectors. Bio-based engineering thermoplastics with cellulose fibers can be used as substitutes because of their higher strength and heat resistance, but the processing of this composite is still challenging. In this study, composites were prepared and investigated using bio-based polyamide (PA) as a polymer matrix in combination with a cellulosic fiber and, for comparison purposes, a glass fiber. A co-rotating twin-screw extruder was used to produce the composites with different fiber contents. For the mechanical properties, tensile tests and charpy impact tests were performed. Compared to glass fiber, reinforced PA 6.10 and PA 10.10, a significantly higher elongation at break with regenerated cellulose fibers, can be achieved. PA 6.10 and PA 10.10 achieve significantly higher impact strengths with the regenerated cellulose fibers than the composites with glass fibers. In the future, bio-based products will also be used in indoor applications. For characterization, the VOC emission GC-MS analysis and odor evaluation methods were used. The VOC emissions (quantitative) were at a low level but the results of the odor tests of selected samples showed values mostly above the required limit values.

2.
Polymers (Basel) ; 14(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956627

ABSTRACT

Due to their valuable properties (low weight, and good thermal and mechanical properties), glass fiber reinforced thermoplastics are becoming increasingly important. Fiber-reinforced thermoplastics are mainly manufactured by injection molding and extrusion, whereby the extrusion compounding process is primarily used to produce fiber-filled granulates. Reproducible production of high-quality components requires a granulate in which the fiber length is even and high. However, the extrusion process leads to the fact that fiber breakages can occur during processing. To enable a significant quality enhancement, experimentally validated modeling is required. In this study, short glass fiber reinforced thermoplastics (polypropylene) were produced on two different twin-screw extruders. Therefore, the machine-specific process behavior is of major interest regarding its influence. First, the fiber length change after processing was determined by experimental investigations and then simulated with the SIGMA simulation software. By comparing the simulation and experimental tests, important insights could be gained and the effects on fiber lengths could be determined in advance. The resulting fiber lengths and distributions were different, not only for different screw configurations (SC), but also for the same screw configurations on different twin-screw extruders. This may have been due to manufacturer-specific tolerances.

SELECTION OF CITATIONS
SEARCH DETAIL
...