Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Cancer ; 116(5): 667-78, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-15828049

ABSTRACT

2-methoxyaniline (o-anisidine) is an industrial and environmental pollutant and a bladder carcinogen for rodents. The mechanism of its carcinogenicity was investigated with 2 independent methods, 32P-postlabeling and 14C-labeled o-anisidine, to show that o-anisidine binds covalently to DNA in vitro after its activation by human hepatic microsomes. We also investigated the capacity of o-anisidine to form DNA adducts in vivo. Rats were treated i.p. with o-anisidine (0.15 mg/kg daily for 5 days) and DNA from several organs was analyzed by 32P-postlabeling. Two o-anisidine-DNA adducts, identical to those found in DNA incubated with o-anisidine and human microsomes in vitro, were detected in urinary bladder (4.1 adducts per 10(7) nucleotides), the target organ, and, to a lesser extent, in liver, kidney and spleen. These DNA adducts were identified as deoxyguanosine adducts derived from a metabolite of o-anisidine, N-(2-methoxyphenyl)hydroxylamine. This metabolite was identified in incubations with human microsomes. With 9 human hepatic microsomal preparations, we identified the specific CYP catalyzing the formation of the o-anisidine metabolites by correlation studies and by examining the effects of CYP inhibitors. On the basis of these analyses, oxidation of o-anisidine was attributed mainly to CYP2E1. Using recombinant human CYP (in Supersomes) and purified CYPs, the participation of CYP2E1 in o-anisidine oxidation was confirmed. In Supersomes, CYP1A2 was even more efficient in oxidizing o-anisidine than CYP2E1, followed by CYP2B6, 1A1, 2A6, 2D6 and 3A4. The results, the first report on the potential of the human microsomal CYP enzymes to activate o-anisidine, strongly suggest a carcinogenic potential of this rodent carcinogen for humans.


Subject(s)
Aniline Compounds/toxicity , Carcinogens, Environmental/toxicity , Environmental Pollutants/toxicity , Aniline Compounds/metabolism , Animals , Biotransformation , Cytochrome P-450 Enzyme System/physiology , DNA Adducts/analysis , DNA Adducts/metabolism , Male , Microsomes, Liver/metabolism , Oxidation-Reduction , Rats , Rats, Wistar
2.
Cancer Lett ; 220(2): 145-54, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15766589

ABSTRACT

Cytochrome P450 1A1 (CYP1A1) is one of the most important enzymes implicated in the metabolic activation of carcinogens. To date, there is still conflicting evidence for the expression of enzymatically functional CYP1A1 in human liver. In the present work, we clearly demonstrate that CYP1A1 capable of metabolizing a carcinogen 1-phenylazo-2-naphthol (Sudan I) is expressed in livers of eight American Caucasian donors. Using two independent methods (immunoblotting and N-terminal sequencing), CYP1A1 protein was detected and quantified in all human hepatic microsomes tested in the study. Its levels, ranging from 0.97 to 3.0 pmol/mg protein, correlated with activities catalyzed by this enzyme [7-ethoxyresorufin O-deethylation (EROD) and oxidation of Sudan I], indicating the presence of enzymatically active CYP1A1. Even though levels of CYP1A1 expression are low, <0.7% of total hepatic CYP, the CYP1A1 contribution to oxidation of carcinogenic Sudan I in the test set of human liver microsomes ranges from 12 to 30%.


Subject(s)
Carcinogens/metabolism , Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1A1/pharmacology , Liver Neoplasms/chemically induced , Liver Neoplasms/physiopathology , Naphthols/metabolism , Gene Expression Profiling , Humans , Immunoblotting , Liver/drug effects , Liver/enzymology , Microsomes, Liver , Oxidation-Reduction
3.
Article in English | MEDLINE | ID: mdl-16601807

ABSTRACT

2-Methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole) are important pollutants and potent carcinogens for rodents. o-Anisidine is oxidized by microsomes of rats and rabbits to N-(2-methoxyphenyl)hydroxylamine that is also formed as the reduction metabolite of o-nitroanisole. o-Anisidine is a promiscuity substrate of rat and rabbit cytochrome P450 (CYP) enzymes, because CYPs of 1A, 2B, 2E and 3A subfamilies oxidize o-anisidine. Using purified CYP enzymes, reconstituted with NADPH: CYP reductase, rabbit CYP2E1 was the most efficient enzyme oxidizing o-anisidine, but the ability of CYP1A1, 1A2, 2B2, 2B4 and 3A6 to participate in o-anisidine oxidation was also proved. Utilizing Western blotting and consecutive immunoquantification employing chicken polyclonal anti bodies raised against various CYPs, the effect of o-anisidine and o-nitroanisole on the expression of the CYP enzymes was investigated. The expression of CYP1A1/2 was found to be strongly induced in rats treated with either compounds. In addition, 7-ethoxyresorufin O-deethylation, a marker activity for both CYP1A1 and 1A2, was significantly increased in rats treated with either carcinogen. The data demonstrate the participation of different rat and rabbit CYP enzymes in o-anisidine oxidation and indicate that both experimental animal species might serve as suitable models to mimic the o-anisidine oxidation in human. Furthermore, by induction of rat hepatic and renal CYP1A1/2, both o-nitroanisole and o-anisidine influence their carcinogenic effects, modifying their detoxification and/or activation pathways.


Subject(s)
Aniline Compounds/pharmacology , Anisoles/pharmacology , Carcinogens/pharmacology , Cytochrome P-450 Enzyme System/biosynthesis , Environmental Pollutants/pharmacology , Aniline Compounds/pharmacokinetics , Animals , Anisoles/pharmacokinetics , Carcinogens/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Enzyme Induction , Microsomes/enzymology , Rabbits , Rats , Rats, Wistar
4.
Chem Res Toxicol ; 17(5): 663-71, 2004 May.
Article in English | MEDLINE | ID: mdl-15144223

ABSTRACT

2-Nitroanisole (2-NA) is an important industrial pollutant and a potent carcinogen for rodents. Determining the capability of humans to metabolize 2-NA and understanding which human cytochrome P450 (P450) enzymes are involved in its activation and/or detoxification are important to assess an individual's susceptibility to this environmental carcinogen. We compared the ability of hepatic microsomal samples from different species including human to metabolize 2-NA. Comparison between experimental animals and human P450 enzymes is essential for the extrapolation of animal carcinogenicity data to assess human health risk. Human hepatic microsomes generated a pattern of 2-NA metabolites, reproducing that formed by hepatic microsomes of rats and rabbits. An O-demethylated metabolite of 2-NA (2-nitrophenol) and two ring-oxidized derivatives of this metabolite (2,6-dihydroxynitrobenzene and 2,X-dihydroxynitrobenzene) were produced. No nitroreductive metabolism leading to the formation of o-anisidine was evident with hepatic microsomes of any species. Likewise, no DNA binding of 2-NA metabolite(s) measured with either tritium-labeled 2-NA or the (32)P-postlabeling technique was detectable in microsomes. Therefore, hepatic microsomal P450 enzymes participate in the detoxication reactions of this environmental carcinogen. Using hepatic microsomes of rabbits pretreated with specific P450 inducers, microsomes from Baculovirus transfected insect cells expressing recombinant human P450 enzymes, purified P450 enzymes, and selective P450 inhibitors, we found that human recombinant P450 2E1, 1A1, and 2B6, as well as orthologous rodent P450 enzymes, are the most efficient enzymes metabolizing 2-NA. The role of specific P450 enzymes in the metabolism of 2-NA in human hepatic microsomes was investigated by correlating specific P450-dependent reactions with the levels of 2-NA metabolites formed by the same microsomes and by examining the effects of specific inhibitors of P450 enzymes on 2-NA metabolism. On the basis of these studies, we attribute most of the 2-NA oxidation metabolism in human microsomes to P450 2E1. These results, the first report on the metabolism of 2-NA by human P450 enzymes, clearly demonstrate that P450 2E1 is the major human enzyme oxidizing this carcinogen in human liver.


Subject(s)
Anisoles/metabolism , Carcinogens/metabolism , Cytochrome P-450 Enzyme System/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Humans , Inactivation, Metabolic , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Oxidation-Reduction , Rabbits , Recombinant Proteins/metabolism , Time Factors , Transfection
5.
Food Chem Toxicol ; 42(1): 85-91, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14630132

ABSTRACT

Sanguinaria canadesis, Chelidonium majus and Macleya cordata have been used for centuries as alternative medicines. Currently the extracts from these medicinal plants are components of veterinary and human phytopreparations, and of oral-hygiene agents. Sanguinarine and chelerythrine (SA/CHE) are biologically active components of these extracts. They display distinct antibacterial and anti-inflammatory properties, but, on the other hand, they have been reported as having adverse effects - genotoxicity and hepatotoxicity. This paper is aimed at evaluation of the effects of daily administration of the extract from Macleya cordata (2 mg and 100 mg in 1 kg feed, sanguinarine:chelerythrine 3:1) in the diet on the health status of swine. After 90-day administration, alkaloids were retained to a different extent in tissues. The highest SA/CHE retention was detected in the gingiva (0.55 microg/g) and liver (0.15 microg/g), no SA/CHE were detected in muscles. Plasma SA levels attained 0.11 microg/ml. Treated animals did not display any results of hematological, biochemical or histological assay different from controls. A (32)P-postlabeling assay proved that no DNA-adducts with SA/CHE were detected in pig livers. We did not observe any symptom linked to epidemic dropsy syndrome often attributed to sanguinarine. In conclusion, an average daily oral dose of alkaloids up to 5 mg per 1 kg animal body weight proved to be safe.


Subject(s)
Alkaloids/toxicity , Anti-Bacterial Agents/toxicity , Phenanthridines/toxicity , Alkaloids/pharmacokinetics , Animal Feed , Animals , Anti-Bacterial Agents/pharmacokinetics , Benzophenanthridines , Blood Cell Count , DNA Adducts/drug effects , Female , Food Additives/toxicity , Growth/drug effects , Isoquinolines , Liver/drug effects , Male , Phenanthridines/pharmacokinetics , Swine , Tissue Distribution
6.
Cancer Res ; 62(20): 5678-84, 2002 Oct 15.
Article in English | MEDLINE | ID: mdl-12384524

ABSTRACT

1-Phenylazo-2-hydroxynaphthol (Sudan I, C.I. Solvent Yellow 14) is a liver and urinary bladder carcinogen in mammals. We compared the ability of hepatic microsomal samples from different species including human to metabolize Sudan I. Comparison between experimental animals and human cytochromes P450 (CYP) is essential for the extrapolation of animal carcinogenicity data to assess human health risk. Human microsomes generated the pattern of Sudan I metabolites reproducing that formed by hepatic microsomes of rats. Using hepatic microsomes of rats pretreated with specific CYP inducers, microsomes from Baculovirus-transfected insect cells expressing recombinant human CYP enzymes, purified CYP enzymes, and selective CYP inhibitors, we found that rat CYP1A1 and recombinant human CYP1A1 are the most efficient enzymes metabolizing Sudan I. Microsomes from livers (the target of Sudan I carcinogenicity) of different human donors were used to estimate whether authentic human CYPs oxidize Sudan I. Using Western blot analysis and NH(2)-terminal sequencing, we were able to detect and quantify CYP1A1 in human hepatic microsomes. The sequence of nine amino acids of the protein band cross-reacting with antirat CYP1A1 in human microsomes, LFPISMSAT, matched the sequence of human CYP1A1 perfectly (residues 2-10). CYP1A1 expression levels varied significantly among the different human microsomes (0.04-2.4 pmol/mg protein), and constituted <0.6% of the total hepatic CYP complement. All of the human hepatic microsomal samples oxidized Sudan I to C-hydroxymetabolites. Moreover, using the nuclease P1-enhanced version of the (32)P-postlabeling assay, we found that human microsomes were competent in activating Sudan I to form adducts with DNA. The role of specific CYP enzymes in the human hepatic microsomal metabolism was investigated by correlating the CYP-catalytic activities (or CYP contents) in each microsomal sample with the levels of individual metabolites and/or Sudan I-DNA adducts formed by the same microsomes, and by examining the effects of agents that can inhibit specific CYP in Sudan I metabolism. On the basis of these studies, we attribute most of Sudan I metabolism in human microsomes to CYP1A1, but participation of CYP3A4 cannot be ruled out. These results, the first report on the metabolism of Sudan I by human CYP enzymes, strongly suggest a carcinogenic potency of this rodent carcinogen for humans.


Subject(s)
Carcinogens/pharmacokinetics , Cytochrome P-450 CYP1A1/metabolism , Microsomes, Liver/metabolism , Naphthols/pharmacokinetics , Animals , Biotransformation , Carcinogens/toxicity , Humans , Inactivation, Metabolic , Microsomes, Liver/enzymology , Naphthols/toxicity , Oxidation-Reduction , Rabbits , Rats , Recombinant Proteins/metabolism , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL