Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 346: 123598, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38369088

ABSTRACT

Microplastics (MPs) contamination has been reported in all environmental compartments, but very limited information is available at higher-altitude lakes. Nainital Lake, located at a high altitude in the Indian Himalayas, has various ecosystem services and is the major source of water for Nainital town, but the MP abundance is still unknown. This study presents the first evidence of the abundance and distribution of MP in Nainital Lake. Surface water and sediment samples were analysed from 16 different sites in and around the catchment area of Nainital Lake. The MP were observed in all the samples, and their abundance in surface water was 8.6-56.0 particles L-1 in the lake and 2.4-88.0 particles L-1 in hotspot sites. In the surface sediment, MP abundance ranged from 0.4-10.6 particles g-1, while in the hotspot sediment, the mean abundance was 0.6 ± 0.5 particles g-1. Fibers were the dominant MP, while 0.02-1 mm were the predominant size of MP particles. The results of chemical characterization showed the presence of six polymers, among which high-density polyethylene was the most abundant. The Polymer Hazard Index assessment classified the identified polymers as low-to high-risk categories, with a higher abundance of low- (polypropylene) and medium- (polyethylene)-risk polymers. Tourist activities and run-off catchments can be considered the major sources of MP, which can affect the ecosystem. Minimal concentrations of MP were observed in the tube well and drinking water, which depicts the direct risks to humans and, thus, the need for remedial measures to prevent MP contamination in drinking water. This study improves the knowledge of MP contamination in the higher-altitude freshwater lake, which can be the major pathway for the transport of MP to the rivers, and also emphasizes the need for waste management in Nainital town.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Lakes/chemistry , Ecosystem , Drinking Water/analysis , Altitude , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polyethylene/analysis , India
2.
Sci Total Environ ; 902: 166155, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37562629

ABSTRACT

Perfluorooctanoic acid (PFOA) and Perfluorooctane sulfonate (PFOS) are resistant to breakdown and are now considered global contaminants. However, interest in these recalcitrant compounds among scientists and legislators has grown significantly in recent years. In the present study, we analyzed the level of PFOA and PFOS contamination in surface water from the coastal regions of Tamil Nadu and West Bengal. After solid phase extraction, 49 samples were analyzed by liquid chromatography coupled with mass spectrometry (LOD ≤ 1.5 ng L-1). The PFOA and PFOS present in all samples at the highest concentration were found in the Ennore coastal region (reaching a maximum of 24.8 ng L-1 and 13.9 ng L-1 in CH-6 and CH-14 respectively). Similarly, on the West Bengal coast, concentrations of PFOA ranged from <1.5 to 14.0 ng L-1 and <1.3 to 8.2 ng g-1 in water and sediment respectively. PFOS concentrations in water and sediment ranged from <1.2 to 9.0 ng L-1 and <1.2 to 7.9 ng g-1, respectively. According to the principal component analysis, the majority of the variances (65.04 %) show a positive association, which points to industrial and domestic discharges as significant point sources of these compounds. The results from this study could be used to determine and understand the levels of PFOA and PFOS contamination along the Indian Coast as well as provide baseline information for imminent monitoring investigations. The environmental occurrences of PFOA and PFOS reported in the current study would allow policymakers to take appropriate measures to safeguard coastal ecosystems or reduce the likelihood of contamination, creating a sustainable and healthy environment.

3.
Mar Pollut Bull ; 131(Pt A): 460-467, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29886972

ABSTRACT

Bioavailable dissolved organic carbon (BDOC), nitrogen (BDON) and their degradation rate constants were measured for the Chilika Lagoon, India. Long-term laboratory incubation experiments (90 days) were conducted at a constant temperature (25 °C) to quantify the bioavailable dissolved organic matter (DOM) and the possible degradation rate coefficients. The results showed that 41 ±â€¯12% of dissolved organic carbon (DOC) and 47 ±â€¯17% of dissolved organic nitrogen (DON) were BDOC and BDON respectively, with their stoichiometry found to be higher than the Redfield ratio. A first order exponential non-linear fitting routine was used to estimate pool sizes. The degradation rate constant (k) for the BDOC varied from 0.127-0.329 d-1 and BDON from 0.043-0.306 d-1 during the study period. Half-lives of the BDOC and BDON ranged from 2.1-5.4 and 2.2-15.9 days, respectively. Overall, the results showed that a fraction of the labile DON was transported from the lagoon to the adjacent coastal sea.


Subject(s)
Carbon/pharmacokinetics , Nitrogen/pharmacokinetics , Saline Waters/chemistry , Biological Availability , Carbon/analysis , India , Nitrogen/analysis , Rivers , Saline Waters/analysis , Spatio-Temporal Analysis , Tropical Climate
4.
Vaccine ; 22(11-12): 1475-9, 2004 Mar 29.
Article in English | MEDLINE | ID: mdl-15063571

ABSTRACT

Hepatitis B surface antigen (HBsAg) differs from many antigens because of its associated lipid bilayer that is largely composed of phospholipids. In general, phosphate groups adsorb strongly to hydroxylated mineral surfaces by ligand exchange. The purpose of this study was to investigate the mechanism of adsorption of hepatitis B surface antigen to aluminum hydroxide adjuvant with emphasis on the role of phospholipids in this adsorption. The adsorption of HBsAg by aluminum hydroxide adjuvant exhibits a high affinity adsorption isotherm. The Langmuir equation was used to calculate the adsorptive capacity (1.7 microg/microg Al), which is the amount of HBsAg adsorbed at monolayer coverage and the adsorptive coefficient (6.0 ml/microg), which is a measure of the strength of the adsorption force. The relatively high value of the adsorptive coefficient indicates that adsorption is due to a strong attractive force. Ligand exchange between a phosphate of the antigen and a surface hydroxyl of the adjuvant provides the strongest adsorption mechanism. The adsorption capacity of HBsAg was not affected by increased ionic strength indicating that electrostatic attraction is not the predominant adsorption force. Adsorption was also not affected by the addition of ethylene glycol indicating that hydrophobic interactions were not the predominant adsorption force. The strength of the adsorption force was indicated by the resistance of HBsAg to elution when exposed to interstitial fluid. Less than 5% of the HBsAg adsorbed to aluminum hydroxide adjuvant in a model vaccine was eluted during a 12 h in vitro exposure to interstitial fluid at 37 degrees C. Less than 1% of the adsorbed HBsAg in two commercial vaccines was eluted by in vitro exposure to interstitial fluid for 48 h at 37 degrees C. Thus, it was concluded that adsorption of HBsAg by aluminum hydroxide adjuvant is predominantly due to ligand exchange between the phospholipids in HBsAg and surface hydroxyls in aluminum hydroxide adjuvant.


Subject(s)
Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Hepatitis B Surface Antigens/chemistry , Adsorption , Animals , Chemical Phenomena , Chemistry, Physical , Hepatitis B Surface Antigens/isolation & purification , Sheep , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...