Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1233772, 2023.
Article in English | MEDLINE | ID: mdl-37828933

ABSTRACT

Nitrogen (N) is the most extracted and exported element by the soybean crop. In high yield tropical environments with irrigation, little is known about N accumulation in different soybean plant organs as well as the N balance. The objective of this study was to characterize soybean growth, N accumulation in plant organs, N balance, and N gap in a high yield tropical environment. This study was performed in a homogeneous field, in a soil with low organic matter, with 20 kg ha-1 of N, under furrow fertilization. Evaluations were performed ten times, temporally distributed from emergence to senescence. The soybean cultivar used was 'RK7518 IPRO' and was sown with row spacing of 0.45 m and a seeding rate of 300,000 plants ha-1. Plant N partition, N from the biological N fixation (BNF), grain yield, crop harvest index (HI), N harvest index (NHI) with and without root contribution were evaluated. Also, at the grain filling stage the N gap was evaluated from the soil by difference between whole plant accumulated N and the amount of N from BNF. The average grain yield was 6,470 kg ha-1 and leads to a negative partial balance of N of -33.4 and -42.8 kg[N] ha-1 with and without roots, respectively. The N gap from the soil was 231.7 kg[N] ha-1. It is recommended to adopt techniques that increase the efficiency of BNF and the soil N accumulation to balance these production systems in the medium to long term.

2.
Sci Rep ; 12(1): 508, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017557

ABSTRACT

On-farm soybean yield has increased considerably in the last 50 years in southern Brazil, but there is still little information about how selection and breeding for yield increase has changed the agronomic attributes of cultivars. The objectives of this study were to evaluate the changes in soybean yield, seed oil and protein concentration, and changes in plant attributes that might be associated with yield improvement of 26 soybean cultivars released over the past 50 years in southern Brazil, sown simultaneously in a common field environment for two growing seasons. The average rate of yield gain was 45.9 kg ha-1 yr-1 (2.1% ha-1 yr-1), mainly due increased seed number per area and harvest index. Over year of cultivar release, cultivars became less susceptible to lodging, as well as plant mortality reduced. Meanwhile, the seed oil concentration increased, and seed protein concentration decreased, which could have negative consequences for soybeans use and requires further attention for breeding of future cultivars. Breeders have successfully contributed to the annual rate of soybean yield increase in southern Brazil. By our results, as well as the official on-farm production data, there is no evidence of soybean yield reaching a plateau in the near future in southern Brazil.

3.
Front Plant Sci ; 9: 396, 2018.
Article in English | MEDLINE | ID: mdl-29643860

ABSTRACT

The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

4.
Front Plant Sci ; 8: 1482, 2017.
Article in English | MEDLINE | ID: mdl-28919900

ABSTRACT

The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that fertilizer recommendations should be related to the temporal variability of micronutrient absorption rates, in contrast to the classic recommendation based on the critical soil micronutrient content. The maximum micronutrient absorption rates occur between the reproductive R4 and R5 growth stages. These evaluations allowed to predict the maximum micronutrient requirements, considered equal to respective stalk sap concentrations.

5.
An Acad Bras Cienc ; 89(1 Suppl 0): 705-716, 2017 May.
Article in English | MEDLINE | ID: mdl-28538814

ABSTRACT

Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.


Subject(s)
Crops, Agricultural/growth & development , Fertilizers/analysis , Zea mays/growth & development , Biomass , Models, Biological
6.
An. acad. bras. ciênc ; 89(1,supl): 705-716, May. 2017. tab, graf
Article in English | LILACS | ID: biblio-886665

ABSTRACT

ABSTRACT Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.


Subject(s)
Crops, Agricultural/growth & development , Zea mays/growth & development , Fertilizers/analysis , Biomass , Models, Biological
7.
Front Plant Sci ; 8: 327, 2017.
Article in English | MEDLINE | ID: mdl-28377778

ABSTRACT

In recent years, the application of natural substances on crops has been intensified in order to increase the resistance and yield of the soybean crop. Among these products are included plant biostimulants that may contain algae extracts, amino acids, and plant regulators in their composition. However, there is little information on the isolated effect of each of these constituents. The objective of this research was to evaluate the effect of the application of isolated amino acids on the antioxidant metabolism of the soybean crop. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate, phenylalanine, cysteine, glycine in seed treatment, and foliar application at V4 growth stage. Antioxidant metabolism constituents evaluated were superoxide dismutase, catalase, peroxidase, hydrogen peroxide content, proline, and lipid peroxidation. In addition, resistance enzymes as polyphenol oxidase and phenylalanine ammonia-lyase (PAL) were evaluated. In both experiments, the use of cysteine, only in seed treatment and in both seed treatment and foliar application increased the activity of the enzyme PAL and catalase. Also in both experiments, the use of phenylalanine increased the activity of the enzyme PAL when the application was carried out as foliar application or both in seed treatment and foliar application. In the field experiment, the application of glutamate led to an increase in the activity of the catalase and PAL enzymes for seed treatment and foliar application. The use of the set of amino acids was only efficient in foliar application, which led to a greater activity of the enzymes peroxidase, PAL, and polyphenol oxidase. The other enzymes as well as lipid peroxidation and hydrogen peroxide presented different results according to the experiment. Therefore, glutamate, cysteine, phenylalanine, and glycine can act as signaling amino acids in soybean plants, since small doses are enough to increase the activity of the antioxidant enzymes.

8.
Occup Health Saf ; 86(4): EP10-11, 2017 Apr.
Article in English | MEDLINE | ID: mdl-30281970

ABSTRACT

Better water management is a key factor in reducing U.S. water consumption that can be replicated in other parts of the world.


Subject(s)
Climate Change/economics , Conservation of Natural Resources/economics , Water Supply/economics , Humans , United States
9.
Int J Biometeorol ; 56(5): 823-30, 2012 Sep.
Article in English | MEDLINE | ID: mdl-21866380

ABSTRACT

Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, São Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.


Subject(s)
Agriculture/methods , Seasons , Vitis/growth & development , Brazil , Plant Shoots/growth & development , Temperature
10.
An. acad. bras. ciênc ; 83(3): 1097-1108, Sept. 2011. ilus, graf, tab
Article in English | LILACS | ID: lil-595547

ABSTRACT

Wetting and drying (W-D) cycles can induce important elemental migrations in soils. The main purpose of this work was to study the possible existence of soil chemical elemental migrations in samples submitted to repeated W-D cycles during evaluations of soil water retention curve (SWRC). The experimental measurements were carried out by Atomic Absorption Spectrometry (AAS) for Ca2+, Mg2+ and K+ on samples of three different Brazilian tropical soils (Geric Ferralsol, Eutric Nitosol and Rhodic Ferralsol). Results demonstrate an increase in the electrical conductivity of the water extracted from the samples and significant losses of Ca2+, Mg2+ and K+ during the applications of up to nine W-D cycles. It was also observed differences in SWRC for all soils when samples submitted to the application of several W-D cycles were compared with samples not submitted to it. These differences occurred at the region of both structural and textural pores. A possible explanation for these results could be the soil chemical migration during the sequences of W-D cycles, which can affect the soil structure development.


Os ciclos de umedecimento e secamento (U-S) podem induzir importantes migrações de elementos químicos no solo. O objetivo principal deste trabalho foi estudar a possível existência de migração de elementos químicos em amostras de solos submetidas a repetidos ciclos de U-S durante a avaliação da curva de retenção de água do solo. As determinações de Ca2+,Mg2+ e K+ foram obtidas por Espectrometria de Absorção Atômica em três diferentes solos tropicais do Brasil (Latossolo Vermelho-Amarelo, Nitossolo Vermelho e Latossolo Vermelho). Os resultados demonstram um aumento da condutividade elétrica da água extraída das amostras de solo e perda significativa de Ca2+, Mg2+ e K+ após a aplicação de nove ciclos de U-S. Diferenças nas curvas de retenção foram também observadas para todos os solos quando as amostras submetidas aos ciclos de U-S foram comparadas com as amostras não submetidas. Essas diferenças ocorreram tanto na região estrutural quanto textural dos poros do solo. Uma possível explicação para esses resultados pode ser a migração de elementos químicos do solo durante as sequências de ciclos de U-S, os quais podem afetar o desenvolvimento da estrutura do solo.


Subject(s)
Calcium/analysis , Magnesium/analysis , Potassium/analysis , Soil/chemistry , Spectrophotometry, Atomic , Water Movements
11.
An Acad Bras Cienc ; 83(3): 1097-108, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21830003

ABSTRACT

Wetting and drying (W-D) cycles can induce important elemental migrations in soils. The main purpose of this work was to study the possible existence of soil chemical elemental migrations in samples submitted to repeated W-D cycles during evaluations of soil water retention curve (SWRC). The experimental measurements were carried out by Atomic Absorption Spectrometry (AAS) for Ca(2+), Mg(2+) and K(+) on samples of three different Brazilian tropical soils (Geric Ferralsol, Eutric Nitosol and Rhodic Ferralsol). Results demonstrate an increase in the electrical conductivity of the water extracted from the samples and significant losses of Ca(2+), Mg(2+) and K(+) during the applications of up to nine W-D cycles. It was also observed differences in SWRC for all soils when samples submitted to the application of several W-D cycles were compared with samples not submitted to it. These differences occurred at the region of both structural and textural pores. A possible explanation for these results could be the soil chemical migration during the sequences of W-D cycles, which can affect the soil structure development.


Subject(s)
Calcium/analysis , Magnesium/analysis , Potassium/analysis , Soil/chemistry , Spectrophotometry, Atomic , Water Movements
12.
An Acad Bras Cienc ; 81(2): 271-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19488631

ABSTRACT

Riparian forests can provide an important service for aquatic ecosystems by sequestering hillslopederived sediments. However, the width of a riparian buffer zone required to filter sediments is not yet wellunderstood. Here are used two complementary tracers to measure sediment retention. The 137Cs technique and the soil carbon isotopic ratios (delta13C) are utilized to investigate sediment deposition and erosion rates on a slope transect cultivated with sugarcane followed by a secondary riparian forest zone in Iracemápolis, State of São Paulo, Brazil. The 137Cs technique and the delta13C analysis showed that the width of a riparian vegetation in accordance to a Brazilian Environmental Law (N masculine4.771/65) was not sufficient in trapping sediments coming from agricultural lands, but indicated the importance of these forests as a conservation measure at the watershed scale. The complementary delta13C analysis together with soil morphology aspects allowed a better interpretation of the sediment redistribution along the sugarcane and riparian forest transects.


Subject(s)
Carbon Isotopes/analysis , Crops, Agricultural , Environmental Monitoring/methods , Geologic Sediments/analysis , Saccharum , Soil , Trees , Brazil , Environmental Monitoring/legislation & jurisprudence , Water Movements
13.
An. acad. bras. ciênc ; 81(2): 271-279, June 2009. graf
Article in English | LILACS | ID: lil-514660

ABSTRACT

Riparian forests can provide an important service for aquatic ecosystems by sequestering hillslopederived sediments. However, the width of a riparian buffer zone required to filter sediments is not yet wellunderstood. Here are used two complementary tracers to measure sediment retention. The 137Cs technique and the soil carbon isotopic ratios (δ13C) are utilized to investigate sediment deposition and erosion rates on a slope transect cultivated with sugarcane followed by a secondary riparian forest zone in Iracemápolis, State of São Paulo, Brazil. The 137Cs technique and the δ13C analysis showed that the width of a riparian vegetation in accordance to a Brazilian Environmental Law (Nº4.771/65) was not sufficient in trapping sediments coming from agricultural lands, but indicated the importance of these forests as a conservation measure at the watershed scale. The complementary δ13C analysis together with soil morphology aspects allowed a better interpretation of the sediment redistribution along the sugarcane and riparian forest transects.


As matas ciliares podem fornecer serviços importantes para os ecossistemas aquáticos sequestrando sedimentos oriundos das áreas de encostas. No entanto, a largura da zona ripária necessária para a retenção de sedimentos ainda não está bem determinada. Aqui são usadas duas técnicas complementares para medir a retenção de sedimentos. As metodologias do137Cs e da composição isotópica do carbono (δ13C) são utilizadas para avaliar a deposição de sedimentos e taxas de erosão em uma encosta cultivada com cana-de-açúcar seguida poruma mata ciliar situada em Iracemápolis, no Estado de São Paulo, Brasil. As análises pelas técnicas do 137Cs e δ13C mostraram que a largura da mata ciliar definida pela Lei Ambiental Brasileira (Nº4.771/65) não foi suficiente na retenção de sedimentos oriundos de áreas cultivadas, mas indicou a importância destas florestas como medida de conservação de bacias hidrográficas. A análise complementar de δ13C junto com informações morfológicas do solo permitiu melhor interpretação da redistribuição de sedimentos ao longo das áreas de cana-de-açúcar e mata ciliar.


Subject(s)
Crops, Agricultural , Carbon Isotopes/analysis , Environmental Monitoring/methods , Geologic Sediments/analysis , Saccharum , Soil , Trees , Brazil , Environmental Monitoring/legislation & jurisprudence , Water Movements
14.
An. acad. bras. ciênc ; 81(1): 151-161, Mar. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-506860

ABSTRACT

Soil pore structure characterization using 2-D image analysis constitutes a simple method to obtain essential information related to soil porosity and pore size distribution (PSD). Such information is important to infer on soil quality, which is related to soil structure and transport processes inside the soil. Most of the time soils are submitted to wetting and drying cycles (W-D), which can cause important changes in soils with damaged structures. This report uses 2-D image analysis to evaluate possible modifications induced by W-D cycles on the structure of damaged soil samples. Samples of three tropical soils (Geric Ferralsol, GF; Eutric Nitosol, EN; and Rhodic Ferralsol, RF) were submitted to three treatments: 0WD, the control treatment in which samples were not submitted to any W-D cycle; 3WD and 9WD with samples submitted to 3 and 9 consecutive W-D cycles, respectively. It was observed that W-D cycles produced significant changes in large irregular pores of the GF and RF soils, and in rounded pores of the EN soil. Nevertheless, important changes in smaller pores (35, 75, and 150 µm) were also observed for all soils. As an overall consideration, it can be said that the use of image analysis helped to explain important changes in soil pore systems (shape, number, and size distribution) as consequence of W-D cycles.


A caracterização da estrutura do solo usando a análise de imagens bidimensionais (2-D) constitui um método simples na obtenção de informações essenciais relacionadas com a porosidade do solo e a distribuição do tamanho de poros. Tal informação é importante para obter dados sobre a qualidade do solo, a qual está diretamente ligada à sua estrutura e aos processos de transporte que ocorrem no seu interior. Na maior parte do tempo os solos são submetidos a vários ciclos de umedecimento ("wetting") e secamento ("drying") (W-D) que podem causar importantes mudanças em solos que possuem estruturas danificadas. Neste estudo foi usada a análise de imagens em 2-D na avaliação de possíveis modificações devido a vários ciclos de W-D na estrutura de amostras de solo danificadas.Três solos diferentes em textura (Latossolo vermelho-amarelo distrófico - LVAd; Nitossolo vermelho eutrófico - NVe, Latossolo vermelho distrófico - LVd) foram submetidos a três diferentes tratamentos: 0WD, amostras controle não submetidas a nenhum ciclo de W-D; 3WD e 9WD, amostras submetidas a 3 e 9 ciclos consecutivos de W-D, respectivamente. Foi observado que os ciclos de W-D produziram mudanças significativas nos poros grandes irregulares dos solos LVAd e LVd e nos poros arredondados do NVe. Importantes mudanças nos poros de 35 até 150 µm foram observadas para todos os solos estudados. A partir dos resultados obtidos pode ser dito que o uso da análise de imagens auxiliou com sucesso na explicação de variações no sistema poroso (formato, número e distribuição de tamanho dos poros) devido aos ciclos de W-D para todos os solos analisados.

15.
Appl Radiat Isot ; 63(4): 505-11, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16039135

ABSTRACT

Several studies have shown that physical properties of a soil may vary significantly over relatively short distances. This variability is due to the nature of the soil, agricultural management practices and sampling procedures; this study is focused on the latter factor. gamma-Ray tomography was used as a tool to evaluate the quality of soil samples collected for estimating physical characteristics of the soil and to detect possible damage to the soil in the process of sampling. A first-generation tomograph with an 241Am source and a 3''x3'' NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. The results show that computed tomography can provide an insight into the sample structure, which helps to select samples that are best suited for evaluation of physical characteristics of a soil.

16.
Appl Radiat Isot ; 59(1): 17-25, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12878118

ABSTRACT

Soil compaction is one of the fundamental parameters to evaluate the environmental impact of agricultural machinery traffic on soils. Compaction causes modifications on soil physical properties such as changes in porosity and structure that are related to soil water movement and gas exchange The objective of this work was to evaluate soil surface sealing after sewage-sludge application, and the influence of agricultural machinery traffic, through computed tomography. A first generation tomograph was used having a 137Cs source and a 3 in x 3 in NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube. Image analysis and tomographic unit profiles could successfully be used for the detection of soil surface sealing and soil compaction due to machinery traffic associated to sewage-sludge application.


Subject(s)
Gamma Rays , Sewage/chemistry , Soil/analysis , Tomography, Emission-Computed/methods , Agriculture , Cesium Radioisotopes , Image Processing, Computer-Assisted
17.
Appl Radiat Isot ; 57(3): 375-80, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12201145

ABSTRACT

The application of sewage sludge as a fertilizer on soils may cause compacted surface layers (surface sealing), which can promote changes on soil physical properties. The objective of this work was to study the use of gamma-ray computed tomography, as a diagnostic tool for the evaluation of this sealing process through the measurement of soil bulk density distribution of the soil surface layer of samples subjected to sewage sludge application. Tomographic images were taken with a first generation tomograph with a resolution of 1 mm. The image analysis opened the possibility to obtain soil bulk density profiles and average soil bulk densities of the surface layer and to detect the presence of soil surface sealing. The sealing crust thickness was estimated to be in the range of 2-4 mm.

18.
Acta amaz ; 29(2)jun. 1999.
Article in Portuguese | LILACS-Express | LILACS, VETINDEX | ID: biblio-1454689

ABSTRACT

The hydrologic regime, with high and low water levels make the low land very succeptible to ecological changes, in both soils and lakes. During high level periods, low land is fertilized by sediment deposition, making these areas the most fertile areas of the Amazonian region. This work is an evalution of soil and sediment characteristics of two low land lakes: Passarinho and Gravetão. They are situated near Manaus, Brazil. Parameters studied were: texture, and water retention. The results show that soils and sediments have high water retention properties, with maximum values around 45 mm/10cm, considering the available water between -10 and -1500 kPa. Silt is the main component in most samples, varying from 17 to 71%.


O regime hidrológico de nível de água baixo e alto torna as várzeas suscetíveis a alterações ecológicas, tanto nos solos quanto nos lagos. No período de nível de água alto, as várzeas são fertilizadas pelo sedimento cm suspensão que é depositado, tomando essas áreas as mais férteis da Região Amazônica. O presente trabalho avalia as características de solos e de sedimentos de dois lagos de várzea (Passarinho e Gravetão, situados próximo a Manaus) no que tange às propriedades físicas como a textura c curvas de retenção de água. Os resultados revelam que os solos e os sedimentos têm alta capacidade de reter a água, c consequentemente de água disponível, com valores máximos da ordem de 45 mm/10cm, considerando a água disponível entre os potenciais -10 e -1500 kPa. A fração silte da composição granulométrica foi, na maioria dos resultados, a mais expressiva, variou de 17 a 71%.

SELECTION OF CITATIONS
SEARCH DETAIL
...