Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(8): e0284972, 2023.
Article in English | MEDLINE | ID: mdl-37549142

ABSTRACT

It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.


Subject(s)
Adiposity , Obesity , Pregnancy , Mice , Animals , Male , Female , Humans , Adiposity/physiology , Diet, High-Fat/adverse effects , Ileum , Permeability , Maternal Nutritional Physiological Phenomena
2.
Biol Reprod ; 107(2): 574-589, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35377412

ABSTRACT

Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8-10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.


Subject(s)
Obesity , Placenta , Animals , Diet, High-Fat/adverse effects , Fathers , Female , Glucose/metabolism , Humans , Hypoxia/metabolism , Male , Mice , Obesity/metabolism , Placenta/metabolism , Placentation , Pregnancy
3.
J Dev Orig Health Dis ; 13(5): 617-625, 2022 10.
Article in English | MEDLINE | ID: mdl-35057878

ABSTRACT

This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.


Subject(s)
Oxidative Stress , Pyruvaldehyde , Animals , Female , Fibrosis , Inflammation/chemically induced , Pyruvaldehyde/toxicity , Rats , Rats, Wistar
4.
Licere (Online) ; 22(2): 331-352, junho.2019. ilus, tab
Article in Portuguese | LILACS | ID: biblio-1010184

ABSTRACT

Este estudo descreve e analisa a rotina de trabalho de um programa de recreação e ginástica para pacientes com insuficiência crônica renal. O tipo de trabalho desenvolvido foi a pesquisa-ação empírica. Um questionário-diagnóstico foi aplicado a 85 sujeitos adultos em hospital situado em Maringá-PR. No estudo foram utilizados diferentes tipos de instrumentos de coleta: 1) Questionário SF 36 de qualidade de vida; 2) Entrevistas semiestruturadas; e 3) Registro fotográfico. Os resultados apresentam e discutem o cotidiano e a rotina do hospital e os procedimentos necessários para desenvolvimento de atividades em sala de hemodiálise. Em conclusão, este estudo caracterizou as necessidades dos pacientes, as dificuldades encontradas na implantação do programa e estratégias desenvolvidas para intervenção.


The current study describes and analyzes the routine of the recreation and exercise program in chronic renal failure patients. The type of research was empirical action research. The diagnostic questionnaire was applied to 85 adults in a hospital of Maringá-PR. This study also used other different types of instruments: 1) SF 36 quality of life questionnaire; 2) Semi-structured interviews and 3) Photographic record. The results presented and discussed the routine of the hospital and the necessary procedure for activities development in the hemodialysis room. In conclusion, this study was characterized the patients needs and the difficulties of implementation and development of the intervention program.


Subject(s)
Humans , Quality of Life , Complementary Therapies , Exercise , Mental Health , Renal Dialysis/adverse effects , Renal Dialysis/psychology , Renal Insufficiency, Chronic , Workflow , Inpatients , Interpersonal Relations , Leisure Activities , Nurse-Patient Relations
5.
Mol Cell Endocrinol ; 462(Pt B): 119-126, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28962894

ABSTRACT

Obesity is associated with an imbalance in the activity of the autonomic nervous system (ANS), specifically in the organs involved in energy metabolism. The pancreatic islets are richly innervated by the ANS, which tunes the insulin release due to changes in energy demand. Therefore, changes in the sympathetic input that reach the pancreas can lead to metabolic dysfunctions. To evaluate the role of the sympathetic ends that innervate the pancreas, 60-day-old male Wistar rats were subjected to sympathectomy (SYM) or were sham-operated (SO). At 120 day-old SYM rats exhibited an increase in body weight, fat pads and metabolic dysfunctions. Decreases in the HOMA-IR and reductions in insulin release were observed both in vivo and in vitro. Furthermore, the SYM rats exhibited altered pancreatic islet function in both muscarinic and adrenergic assays and exhibited high protein expression of the alpha-2 adrenergic receptor (α2AR). Because α2AR has been linked to type 2 diabetes, these findings demonstrate the clinical implications of this study.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/physiopathology , Homeostasis , Insulin/metabolism , Islets of Langerhans/physiology , Sympathetic Nervous System/metabolism , Aging , Animals , Cells, Cultured , Insulin Resistance , Islets of Langerhans/cytology , Male , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-2/metabolism
6.
An Acad Bras Cienc ; 89(3): 1699-1705, 2017.
Article in English | MEDLINE | ID: mdl-28876395

ABSTRACT

INTRODUCTION/AIM: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. METHODS: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL) standard chow group; high fat diet low carbohydrates group (HFD) and HFD plus daily oral 20U insulin gavage (HFD+INS). Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. RESULTS: Rat oral insulin treatment decreased body weight gain (p<0,001), fasting glucose and triglycerides serum levels (p<0,05) an increased intestinal weight of distal ileum (P<0,05). Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05) in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. CONCLUSIONS: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.


Subject(s)
Blood Glucose/analysis , Diet, High-Fat , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Lipids/blood , Weight Loss/drug effects , Animals , Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Male , Radioimmunoassay , Rats , Rats, Wistar
7.
An. acad. bras. ciênc ; 89(3): 1699-1705, July-Sept. 2017. graf
Article in English | LILACS | ID: biblio-886771

ABSTRACT

ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL) standard chow group; high fat diet low carbohydrates group (HFD) and HFD plus daily oral 20U insulin gavage (HFD+INS). Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001), fasting glucose and triglycerides serum levels (p<0,05) an increased intestinal weight of distal ileum (P<0,05). Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05) in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.


Subject(s)
Animals , Male , Rats , Blood Glucose/analysis , Weight Loss/drug effects , Diet, High-Fat , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Lipids/blood , Blood Glucose/drug effects , Radioimmunoassay , Rats, Wistar , Hypoglycemic Agents/pharmacology , Insulin/pharmacology
8.
Endocrine ; 56(2): 346-356, 2017 May.
Article in English | MEDLINE | ID: mdl-28233096

ABSTRACT

BACKGROUND/AIMS: Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. METHODS: Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of ß-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. RESULTS: Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. CONCLUSION: Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.


Subject(s)
Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Obesity/metabolism , Prediabetic State/drug therapy , Vagus Nerve/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Blood Glucose/metabolism , Body Weight/drug effects , Eating/drug effects , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Obesity/physiopathology , Prediabetic State/chemically induced , Prediabetic State/metabolism , Prediabetic State/physiopathology , Rats , Rats, Wistar , Sodium Glutamate , Vagus Nerve/physiopathology
9.
Exp Physiol ; 100(1): 57-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398717

ABSTRACT

NEW FINDINGS: What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P < 0.05) and fat depots (-17 and -33%, only in HF diet-fed rats; P < 0.05). High-fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P < 0.05); however, vagotomy corrected it in younger rats only, and a similar effect was also observed during the glucose tolerance test. The insulin resistance exhibited by the HF diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the important role of parasympathetic activity, contributes to the condition of obesity, and that non-vagal pathways may be involved along with the imbalanced autonomic nervous system.


Subject(s)
Diet, High-Fat , Metabolic Syndrome/etiology , Obesity/etiology , Vagus Nerve/physiopathology , Adiposity , Age Factors , Animals , Biomarkers/blood , Blood Glucose/metabolism , Disease Models, Animal , Insulin/blood , Insulin Resistance , Male , Metabolic Syndrome/blood , Metabolic Syndrome/physiopathology , Metabolic Syndrome/prevention & control , Obesity/blood , Obesity/physiopathology , Obesity/prevention & control , Rats, Wistar , Time Factors , Vagotomy , Vagus Nerve/surgery , Weaning , Weight Gain
10.
Br J Nutr ; 111(2): 227-35, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-23841989

ABSTRACT

Impaired pancreatic ß-cell function, as observed in the cases of early nutrition disturbance, is a major hallmark of metabolic diseases arising in adulthood. In the present study, we aimed to investigate the function/composition of the muscarinic acetylcholine receptor (mAChR) subtypes, M2 and M3, in the pancreatic islets of adult offspring of rats that were protein malnourished during lactation. Neonates were nursed by mothers that were fed either a low-protein (4 %, LP) or a normal-protein (23 %, NP) diet. Adult rats were pre-treated with anti-muscarinic drugs and subjected to the glucose tolerance test; the function and protein expression levels of M2mAChR and M3mAChR were determined. The LP rats were lean and hypoinsulinaemic. The selective M2mAChR antagonist methoctramine increased insulinaemia by 31 % in the NP rats and 155 % in the LP rats, and insulin secretion was increased by 32 % in the islets of the NP rats and 88 % in those of the LP rats. The selective M3mAChR antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide decreased insulinaemia by 63 % in the NP rats and 40 % in the LP rats and reduced insulin release by 41 % in the islets of the NP rats and 28 % in those of the LP rats. The protein expression levels of M2mAChR and M3mAChR were 57 % higher and 53 % lower, respectively, in the islets of the LP rats than in those of the NP rats. The expression and functional compositions of M2mAChR and M3mAChR were altered in the islets of the LP rats, as a result of metabolic programming caused by the protein-restricted diet, which might be another possible effect involved in the weak insulin secretion ability of the islets of the programmed adult rats.


Subject(s)
Animal Feed/analysis , Dietary Proteins/administration & dosage , Insulin-Secreting Cells/physiology , Lactation/physiology , Receptors, Muscarinic/classification , Receptors, Muscarinic/metabolism , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose , Diet/veterinary , Female , Glucose/metabolism , Glucose Intolerance , Glucose Tolerance Test , Homeostasis , Male , Maternal Nutritional Physiological Phenomena , Muscarinic Antagonists/pharmacology , Pregnancy , Rats , Rats, Wistar
11.
Cell Physiol Biochem ; 32(6): 1621-30, 2013.
Article in English | MEDLINE | ID: mdl-24335411

ABSTRACT

BACKGROUND/AIMS: Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. METHODS: Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. RESULTS: Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. CONCLUSION: Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults.


Subject(s)
Adipose Tissue, Brown/pathology , Eating , Adipose Tissue, Brown/metabolism , Animals , Animals, Newborn , Area Under Curve , Blood Glucose/analysis , Body Temperature , Body Weight , Corticosterone/blood , Female , Insulin/blood , Litter Size , Male , Obesity/etiology , ROC Curve , Rats , Rats, Wistar , Thermogenesis , Vagus Nerve/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...