Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 235: 116669, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37453506

ABSTRACT

The global demand for masks has increased significantly owing to COVID-19 and mutated viruses, resulting in a massive amount of mask waste of approximately 490,000 tons per month. Mask waste recycling is challenging because of the composition of multicomponent polymers and iron, which puts them at risk of viral infection. Conventional treatment methods also cause environmental pollution. Gasification is an effective method for processing multicomponent plastics and obtaining syngas for various applications. This study investigated the carbon dioxide gasification and tar removal characteristics of an activated carbon bed using a 1-kg/h laboratory-scale bubble fluidized bed gasifier. The syngas composition was analyzed as 10.52 vol% of hydrogen, 6.18 vol% of carbon monoxide, 12.05 vol% of methane, and 14.44 vol% of hydrocarbons (C2-C3). The results of carbon dioxide gasification with activated carbon showed a tar-reduction efficiency of 49%, carbon conversion efficiency of 45.16%, and cold gas efficiency of 88.92%. This study provides basic data on mask waste carbon dioxide gasification using greenhouse gases as useful product gases.


Subject(s)
COVID-19 , Carbon Dioxide , Humans , Charcoal , Masks , COVID-19/prevention & control , Gases , Biomass
2.
Fuel (Lond) ; 331: 125720, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36033729

ABSTRACT

Globally, the demand for masks has increased due to the COVID-19 pandemic, resulting in 490,201 tons of waste masks disposed of per month. Since masks are used in places with a high risk of virus infection, waste masks retain the risk of virus contamination. In this study, a 1 kg/h lab-scale (diameter: 0.114 m, height: 1 m) bubbling fluidized bed gasifier was used for steam gasification (temperature: 800 °C, steam/carbon (S/C) ratio: 1.5) of waste masks. The use of a downstream reactor with activated carbon (AC) for tar cracking and the enhancement of hydrogen production was examined. Steam gasification with AC produces syngas with H2, CO, CH4, and CO2 content of 38.89, 6.40, 21.69, and 7.34 vol%, respectively. The lower heating value of the product gas was 29.66 MJ/Nm3 and the cold gas efficiency was 74.55 %. This study showed that steam gasification can be used for the utilization of waste masks and the production of hydrogen-rich gas for further applications.

3.
Materials (Basel) ; 11(2)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29438340

ABSTRACT

The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO3 crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO3 crystal size, which is dependent on CaCl2/Na2CO3 concentration. The microalgal cells could be embedded in CaCO3 crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe3O4 magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

4.
Nano Lett ; 16(11): 7261-7269, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27775893

ABSTRACT

Nanostructured silicon (Si) is useful in many applications and has typically been synthesized by bottom-up colloid-based solution processes or top-down gas phase reactions at high temperatures. These methods, however, suffer from toxic precursors, low yields, and impractical processing conditions (i.e., high pressure). The magnesiothermic reduction of silicon oxide (SiO2) has also been introduced as an alternative method. Here, we demonstrate the reduction of SiO2 by a simple milling process using a lab-scale planetary-ball mill and industry-scale attrition-mill. Moreover, an ignition point where the reduction begins was consistently observed for the milling processes, which could be used to accurately monitor and control the reaction. The complete conversion of rice husk SiO2 to high purity Si was demonstrated, taking advantage of the rice husk's uniform nanoporosity and global availability, using a 5L-scale attrition-mill. The resulting porous Si showed excellent performance as a Li-ion battery anode, retaining 82.8% of the initial capacity of 1466 mAh g-1 after 200 cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...