Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 8: 645639, 2021.
Article in English | MEDLINE | ID: mdl-34676247

ABSTRACT

The SMOOTH-robot is a mobile robot that-due to its modularity-combines a relatively low price with the possibility to be used for a large variety of tasks in a wide range of domains. In this article, we demonstrate the potential of the SMOOTH-robot through three use cases, two of which were performed in elderly care homes. The robot is designed so that it can either make itself ready or be quickly changed by staff to perform different tasks. We carefully considered important design parameters such as the appearance, intended and unintended interactions with users, and the technical complexity, in order to achieve high acceptability and a sufficient degree of utilization of the robot. Three demonstrated use cases indicate that such a robot could contribute to an improved work environment, having the potential to free resources of care staff which could be allocated to actual care-giving tasks. Moreover, the SMOOTH-robot can be used in many other domains, as we will also exemplify in this article.

2.
Front Bioeng Biotechnol ; 8: 565963, 2020.
Article in English | MEDLINE | ID: mdl-33042967

ABSTRACT

Valentino Braitenberg reported his seminal thought experiment in 1984 using reactive automatons or vehicles with relatively simple sensorimotor connections as models for seemingly complex cognitive processes in biological brains. Braitenberg's work, meant as a metaphor for biological life encompassed a deep knowledge of and served as an analogy for the multitude of neural processes and pathways that underlie animal behavior, suggesting that seemingly complex behavior may arise from relatively simple designs. Braitenberg vehicles have been adopted in robotics and artificial life research for sensor-driven navigation behaviors in robots, such as localizing sound and chemical sources, orienting toward or away from current flow under water etc. The neuroscience community has benefitted from applying Braitenberg's bottom-up approach toward understanding analogous neural mechanisms underpinning his models of animal behavior. We present a summary of the latest studies of Braitenberg vehicles for bio-inspired navigation and relate the results to experimental findings on the neural basis of navigation behavior in animals. Based on these studies, we motivate the important role of Braitenberg vehicles as computational tools to inform research in behavioral neuroscience.

SELECTION OF CITATIONS
SEARCH DETAIL
...