Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 96(8): 2280-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26405752

ABSTRACT

Optimal timing of reproduction within a season may be influenced by several abiotic and biotic factors. These factors sometimes affect different components of fitness, making assessments of net selection difficult. We used estimates of offspring fitness to examine how pre-dispersal seed predation influences selection on flowering schedule in an herb with a bimodal flowering pattern, Actaea spicata. Within individuals, seeds from flowers on early terminal inflorescences had a higher germination rate and produced larger seedlings than seeds from flowers on late basal inflorescences. Reproductive value, estimated using demographic integral projection models and accounting for size-dependent differences in future performance, was two times higher for intact seeds from early flowers than for seeds from late flowers. Fruits from late flowers were, however, much more likely to escape seed predation than fruits from early flowers. Reproductive values of early and late flowers balanced at a predation intensity of 63%. Across 15 natural populations, the strength of selection for allocation to late flowers was positively correlated with mean seed predation intensity. Our results suggest that the optimal shape of the flowering schedule, in terms of the allocation between early and late flowers, is determined by the trade-off between offspring number and quality, and that variation in antagonistic interactions among populations influences the balancing of this trade-off. At the same time they illustrate that phenotypic selection analyses that fail to account for differences in offspring fitness might be misleading.


Subject(s)
Actaea/physiology , Flowers/physiology , Genetic Fitness , Seeds/physiology , Actaea/genetics , Animals , Feeding Behavior , Models, Biological , Reproduction , Seedlings , Time Factors
2.
PLoS One ; 9(4): e93967, 2014.
Article in English | MEDLINE | ID: mdl-24709748

ABSTRACT

Many plant populations have adapted to local soil conditions. However, the role of arbuscular mycorrhizal fungi is often overlooked in this context. Only a few studies have used reciprocal transplant experiments to study the relationships between soil conditions, mycorrhizal colonisation and plant growth. Furthermore, most of the studies were conducted under controlled greenhouse conditions. However, long-term field experiments can provide more realistic insights into this issue. We conducted a five-year field reciprocal transplant experiment to study the relationships between soil conditions, arbuscular mycorrhizal fungi and plant growth in the obligate mycotrophic herb Aster amellus. We conducted this study in two regions in the Czech Republic that differ significantly in their soil nutrient content, namely Czech Karst (region K) and Ceske Stredohori (region S). Plants that originated from region S had significantly higher mycorrhizal colonisation than plants from region K, indicating that the percentage of mycorrhizal colonisation has a genetic basis. We found no evidence of local adaptation in Aster amellus. Instead, plants from region S outperformed the plants from region K in both target regions. Similarly, plants from region S showed more mycorrhizal colonisation in all cases, which was likely driven by the lower nutrient content in the soil from that region. Thus, plant aboveground biomass and mycorrhizal colonisation exhibited corresponding differences between the two target regions and regions of origin. Higher mycorrhizal colonisation in the plants from region with lower soil nutrient content (region S) in both target regions indicates that mycorrhizal colonisation is an adaptive trait. However, lower aboveground biomass in the plants with lower mycorrhizal colonisation suggests that the plants from region K are in fact maladapted by their low inherent mycorrhizal colonization. We conclude that including mycorrhizal symbiosis in local adaptation studies may increase our understanding of the mechanisms by which plants adapt to their environment.


Subject(s)
Acclimatization/physiology , Aster Plant/physiology , Mycorrhizae/growth & development , Symbiosis/physiology , Czech Republic , Plant Roots , Soil Microbiology
3.
Am J Bot ; 97(5): e31-3, 2010 May.
Article in English | MEDLINE | ID: mdl-21622434

ABSTRACT

PREMISE OF THE STUDY: We developed microsatellite primers to investigate genetic diversity and population genetic structure of the endangered herb Menyanthes trifoliata. METHODS AND RESULTS: Using the microsatellite-enriched library method, we identified 10 primer pairs in M. trifoliata. The primers amplified nine di- and one tri-nucleotide repeats with 4-13 alleles per locus in two Belgian populations. CONCLUSIONS: The results indicate that these markers offer an appropriate amount of variation to investigate genetic diversity, pollen dispersal (through paternity inference), and other conservation issues.

4.
Oecologia ; 158(3): 463-72, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18820950

ABSTRACT

The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.


Subject(s)
Aster Plant/genetics , Diploidy , Ecosystem , Polyploidy , Aster Plant/growth & development , Czech Republic , Seeds/growth & development , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...