Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 51(8): 735-741, 2019 10.
Article in English | MEDLINE | ID: mdl-30889289

ABSTRACT

OBJECTIVES: Photoepilation is a commonly used technology in home-use devices (HUDs) and in professional systems to remove unwanted body hair using pulses of laser or intense pulsed light (IPL). Albeit HUDs and professional systems operate at different fluences and treatment regimes, both demonstrate high hair reduction. The underlying mechanisms, however, remain unknown partly due to high divergence of the existing literature data. The objective of this study was to develop an ex vivo photoepilation model with a set of criteria evaluating response to light pulses; and to investigate dose-response behavior of hair follicles (HFs) subjected to a range of fluences. METHODS: After ex vivo treatment (single pulse, 810 nm, 1.7-26.4 J/cm2 , 4-64 ms pulse) human anagen HFs were isolated and maintained in culture for 7-10 days. Response to light was evaluated based on gross-morphology and histological examination (H&E and TUNEL stainings). RESULTS: HFs treated ex vivo demonstrated a dose-dependent response to light with five distinct classes defined by macroscopic and microscopic criteria. Fluences below 13.2 J/cm2 provoked catagen-like transition, higher fluences resulted in coagulation in HF compartments. CONCLUSION: Observed changes in the HF organ culture model were reflected by clinical efficacy. The developed photoepilation model provides an easy and fast method to predict clinical efficacy and permanency of light-based hair removal devices. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Subject(s)
Hair Follicle/pathology , Hair Follicle/radiation effects , Hair Removal/methods , Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy/methods , Adult , Aged , Analysis of Variance , Dose-Response Relationship, Radiation , Female , Hair Removal/instrumentation , Humans , In Vitro Techniques , Middle Aged , Sampling Studies
2.
Lasers Surg Med ; 51(4): 370-382, 2019 04.
Article in English | MEDLINE | ID: mdl-30168605

ABSTRACT

BACKGROUND AND OBJECTIVE: Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS: Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS: Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS: Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.


Subject(s)
Light , Low-Level Light Therapy/methods , Opsins/metabolism , Skin/radiation effects , Soft Tissue Injuries/therapy , Wound Healing/radiation effects , Biomarkers/metabolism , Female , Humans , Immunohistochemistry , In Vitro Techniques , Skin/injuries , Skin/metabolism , Soft Tissue Injuries/metabolism
3.
Lasers Surg Med ; 49(7): 705-718, 2017 09.
Article in English | MEDLINE | ID: mdl-28418107

ABSTRACT

BACKGROUND AND OBJECTIVE: Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. MATERIAL AND METHODS: The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. RESULTS: The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm2 ; 453 nm) on proliferation in the outer root sheath cells. CONCLUSIONS: We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alopecia/radiotherapy , Hair Follicle/metabolism , Hair/growth & development , Light , Low-Level Light Therapy/methods , Rhodopsin/metabolism , Rod Opsins/metabolism , Adult , Aged , Alopecia/physiopathology , Apoptosis , Biomarkers/metabolism , Cell Proliferation , Female , Hair Follicle/physiology , Humans , In Vitro Techniques , Male , Middle Aged
4.
Biochem Pharmacol ; 85(8): 1162-70, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23415902

ABSTRACT

Follicle-stimulating hormone (FSH) activates FSH receptors (FSHR) in granulosa cells to induce follicle differentiation, growth and estradiol production. FSH is used clinically to treat female infertility and is administered by injection. To increase patient convenience and compliance, compound homogeneity and composition, low molecular weight (LMW), orally bioavailable, FSHR agonists are now being developed to replace FSH. In this study, we present the signaling mechanisms of a newly developed LMW dihydropyridine agonist of the FSHR, Org 214444-0. Org 214444-0 is shown to be a stereoselective, nanomolar potent FSHR agonist and selective over the structurally related LHR and TSHR. Org 214444-0 is an allosteric agonist interacting with the transmembrane region of the FSHR. When co-incubated with FSH, Org 214444-0 augments FSH's potency in binding (6.5-fold) and adenylyl cyclase/cAMP activation (3.5-fold) in a concentration-dependent manner. Like FSH, Org 214444-0 induces FSHR internalization and is only marginally effective in stimulating phospholipase C. Moreover, Org 214444-0 stimulates cAMP and estradiol production in human granulosa cells in culture and supports the follicular phase in mature female rats. We conclude that Org 214444-0 is a bonafide FSHR agonist.


Subject(s)
Dihydropyridines/pharmacology , Receptors, FSH/agonists , Sulfonamides/pharmacology , Allosteric Regulation , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/physiology , Female , Follicle Stimulating Hormone/metabolism , Molecular Sequence Data , Molecular Weight , Rats , Receptors, FSH/chemistry , Signal Transduction , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...