Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ISME Commun ; 2(1): 111, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-37938301

ABSTRACT

A grand challenge in microbial ecology is disentangling the traits of individual populations within complex communities. Various cultivation-independent approaches have been used to infer traits based on the presence of marker genes. However, marker genes are not linked to traits with complete fidelity, nor do they capture important attributes, such as the timing of gene expression or coordination among traits. To address this, we present an approach for assessing the trait landscape of microbial communities by statistically defining a trait attribute as a shared transcriptional pattern across multiple organisms. Leveraging the KEGG pathway database as a trait library and the Enhanced Biological Phosphorus Removal (EBPR) model microbial ecosystem, we demonstrate that a majority (65%) of traits present in 10 or more genomes have niche-differentiating expression attributes. For example, while many genomes containing high-affinity phosphorus transporter pstABCS display a canonical attribute (e.g. up-regulation under phosphorus starvation), we identified another attribute shared by many genomes where transcription was highest under high phosphorus conditions. Taken together, we provide a novel framework for unravelling the functional dynamics of uncultivated microorganisms by assigning trait-attributes through genome-resolved time-series metatranscriptomics.

2.
Fungal Syst Evol ; 10: 177-215, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36741554

ABSTRACT

Sorghum production is seriously threatened by the root parasitic weeds (RPWs) Striga hermonthica and Striga asiatica in sub-Saharan Africa. Research has shown that Striga control depends on eliminating its seed reserves in soil. Several species of the genus Fusarium (Nectriaceae, Hypocreales), which have been isolated from diseased Striga plants have proven to be highly pathogenic to all developmental stages of these RPWs. In the present study 439 isolates of Fusarium spp. were found associated with soils from Sorghum growing fields, Sorghum rhizosphere, or as endophytes with Sorghum roots and seeds, or as endophytes of Striga stems and seeds. Based on multi-locus phylogenies of combinations of CaM, tef1, rpb1 and rpb2 alignments, and morphological characteristics, 42 species were identified, including three species that are newly described, namely F. extenuatum and F. tangerinum from Sorghum soils, and F. pentaseptatum from seed of Striga hermonthica. Using a previously published AFLP-derived marker that is specific to detect isolates of F. oxysporum f.sp. strigae, an effective soil-borne biocontrol agent against Striga, we also detected the gene in several other Fusarium species. As these isolates were all associated with the Striga/Sorghum pathosystem, the possibility of horizontal gene transfer among these fusaria will be of interest to further investigate in future. Citation: Lombard L, van Doorn R, Groenewald JZ, Tessema T, Kuramae EE, Etolo DW, Raaijmakers JM, Crous PW (2022). Fusarium diversity associated with the Sorghum-Striga interaction in Ethiopia. Fungal Systematics and Evolution 10: 177-215. doi: 10.3114/fuse.2022.10.08.

3.
Environ Microbiol ; 15(3): 764-79, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23171326

ABSTRACT

Endophytic Pseudomonas aeruginosa strain BP35 was originally isolated from black pepper grown in the rain forest in Kerala, India. Strain PaBP35 was shown to provide significant protection to black pepper against infections by Phytophthora capsici and Radopholus similis. For registration and implementation in disease management programmes, several traits of PaBP35 were investigated including its endophytic behaviour, biocontrol activity, phylogeny and toxicity to mammals. The results showed that PaBP35 efficiently colonized black pepper shoots and displayed a typical spatiotemporal pattern in its endophytic movement with concomitant suppression of Phytophthora rot. Confocal laser scanning microscopy revealed high populations of PaBP35::gfp2 inside tomato plantlets, supporting its endophytic behaviour in other plant species. Polyphasic approaches to genotype PaBP35, including BOX-PCR, recN sequence analysis, multilocus sequence typing and comparative genome hybridization analysis, revealed its uniqueness among P. aeruginosa strains representing clinical habitats. However, like other P. aeruginosa strains, PaBP35 exhibited resistance to antibiotics, grew at 25-41°C and produced rhamnolipids and phenazines. PaBP35 displayed strong type II secretion effectors-mediated cytotoxicity on mammalian A549 cells. Coupled with pathogenicity in a murine airway infection model, we conclude that this plant endophytic strain is as virulent as clinical P. aeruginosa strains. Safety issues related to the selection of plant endophytic bacteria for crop protection are discussed.


Subject(s)
Piper nigrum/microbiology , Pseudomonas aeruginosa/physiology , Animals , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Genotype , Humans , India , Solanum lycopersicum/microbiology , Mice , Phenotype , Phytophthora/microbiology , Plant Shoots/microbiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Toxins, Biological/pharmacology
4.
Plant Dis ; 96(3): 389-397, 2012 Mar.
Article in English | MEDLINE | ID: mdl-30727129

ABSTRACT

Groundnut (Arachis hypogaea) is an economically important legume crop in Vietnam and many other countries worldwide. Stem and pod rot, caused by the soilborne fungus Sclerotium rolfsii, is a major yield-limiting factor in groundnut cultivation. To develop sustainable measures to control this disease, fundamental knowledge of the epidemiology and diversity of S. rolfsii populations is essential. In this study, disease incidence was monitored in eight groundnut areas in central Vietnam with a total of 240 observational field plots. The results showed that 5 to 25% of the field-grown groundnut plants were infected by S. rolfsii. Based on internal transcribed spacer (ITS) ribosomal DNA sequence analyses, three distinct groups were identified among a total of 103 randomly selected S. rolfsii field isolates, with the majority of the isolates (n = 90) in one ITS group. S. rolfsii isolates originating from groundnut, tomato, and taro were all pathogenic on groundnut and relatively sensitive to the fungicide tebuconazole but displayed substantial diversity of various genetic and phenotypic traits, including mycelial compatibility, growth rate, and sclerotial characteristics.

5.
J Appl Microbiol ; 112(2): 390-403, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22121884

ABSTRACT

AIMS: To determine the role of phenazines (PHZ) and lipopeptide surfactants (LPs) produced by Pseudomonas in suppression of stem rot disease of groundnut, caused by the fungal pathogen Sclerotium rolfsii. METHODS AND RESULTS: In vitro assays showed that PHZ-producing Pseudomonas chlororaphis strain Phz24 significantly inhibited hyphal growth of S. rolfsii and suppressed stem rot disease of groundnut under field conditions. Biosynthesis and regulatory mutants of Phz24 deficient in PHZ production were less effective in pathogen suppression. Pseudomonas strains SS101, SBW25 and 267, producing viscosin or putisolvin-like LPs, only marginally inhibited hyphal growth of S. rolfsii and did not suppress stem rot disease. In contrast, Pseudomonas strain SH-C52, producing the chlorinated LP thanamycin, inhibited hyphal growth of S. rolfsii and significantly reduced stem rot disease of groundnut in nethouse and field experiments, whereas its thanamycin-deficient mutant was less effective. CONCLUSIONS: Phenazines and specific lipopeptides play an important role in suppression of stem rot disease of groundnut by root-colonizing Pseudomonas strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas strains Phz24 and SH-C52 showed significant control of stem rot disease. Treatment of seeds or soil with these strains provides a promising supplementary strategy to control stem rot disease of groundnut.


Subject(s)
Antibiosis , Arachis/microbiology , Ascomycota/physiology , Bacterial Proteins/metabolism , Lipopeptides/metabolism , Phenazines/metabolism , Pseudomonas/physiology , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Stems/microbiology , Pseudomonas/chemistry , Pseudomonas/genetics , Seeds/microbiology
6.
Appl Environ Microbiol ; 75(14): 4753-61, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19447950

ABSTRACT

Cyclic lipopeptides (CLPs) are produced by many Pseudomonas species and have several biological functions, including a role in surface motility, biofilm formation, virulence, and antimicrobial activity. This study focused on the diversity and role of LuxR-type transcriptional regulators in CLP biosynthesis in Pseudomonas species and, specifically, viscosin production by Pseudomonas fluorescens strain SBW25. Phylogenetic analyses showed that CLP biosynthesis genes in Pseudomonas strains are flanked by LuxR-type regulators that contain a DNA-binding helix-turn-helix domain but lack N-acylhomoserine lactone-binding or response regulator domains. For SBW25, site-directed mutagenesis of the genes coding for either of the two identified LuxR-type regulators, designated ViscAR and ViscBCR, strongly reduced transcript levels of the viscABC biosynthesis genes and resulted in a loss of viscosin production. Expression analyses further showed that a mutation in either viscAR or viscBCR did not substantially (change of <2.5-fold) affect transcription of the other regulator. Transformation of the DeltaviscAR mutant of SBW25 with a LuxR-type regulatory gene from P. fluorescens strain SS101 that produces massetolide, a CLP structurally related to viscosin, restored transcription of the viscABC genes and viscosin production. The results further showed that a functional viscAR gene was required for heterologous expression of the massetolide biosynthesis genes of strain SS101 in strain SBW25, leading to the production of both viscosin and massetolide. Collectively, these results indicate that the regulators flanking the CLP biosynthesis genes in Pseudomonas species represent a unique LuxR subfamily of proteins and that viscosin biosynthesis in P. fluorescens SBW25 is controlled by two LuxR-type transcriptional regulators.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Lipopeptides/biosynthesis , Pseudomonas fluorescens/physiology , Repressor Proteins/metabolism , Trans-Activators/metabolism , Amino Acid Substitution/genetics , Bacterial Proteins/genetics , Binding Sites , Genetic Complementation Test , Multigene Family , Mutagenesis, Site-Directed , Peptides, Cyclic/biosynthesis , Phylogeny , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Repressor Proteins/genetics , Sequence Homology, Amino Acid , Trans-Activators/genetics
7.
J Bacteriol ; 191(6): 1910-23, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19114474

ABSTRACT

Cyclic lipopeptides produced by Pseudomonas species exhibit potent surfactant and broad-spectrum antibiotic properties. Their biosynthesis is governed by large multimodular nonribosomal peptide synthetases, but little is known about the genetic regulatory network. This study provides, for the first time, evidence that the serine protease ClpP regulates the biosynthesis of massetolides, cyclic lipopeptides involved in swarming motility, biofilm formation, and antimicrobial activity of Pseudomonas fluorescens SS101. The results show that ClpP affects the expression of luxR(mA), the transcriptional regulator of the massetolide biosynthesis genes massABC, thereby regulating biofilm formation and swarming motility of P. fluorescens SS101. Transcription of luxR(mA) was significantly repressed in the clpP mutant, and introduction of luxR(mA) restored, in part, massetolide biosynthesis and swarming motility of the clpP mutant. Site-directed mutagenesis and expression analyses indicated that the chaperone subunit ClpX and the Lon protease are not involved in regulation of massetolide biosynthesis and are transcribed independently of clpP. Addition of Casamino Acids enhanced the transcription of luxR(mA) and massABC in the clpP mutant, leading to a partial rescue of massetolide production and swarming motility. The results further suggested that, at the transcriptional level, ClpP-mediated regulation of massetolide biosynthesis operates independently of regulation by the GacA/GacS two-component system. The role of amino acid metabolism and the putative mechanisms underlying ClpP-mediated regulation of cyclic lipopeptide biosynthesis, swarming motility, and growth in P. fluorescens are discussed.


Subject(s)
Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Gene Expression Regulation, Bacterial , Lipopeptides/biosynthesis , Pseudomonas fluorescens/genetics , Bacterial Proteins/genetics , Biofilms , Endopeptidase Clp/genetics , Molecular Sequence Data , Pseudomonas fluorescens/enzymology , Pseudomonas fluorescens/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic
8.
J Appl Microbiol ; 104(3): 839-51, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17976176

ABSTRACT

AIMS: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. METHODS: Biosurfactant-producing pseudomonads were genotypically and biochemically characterized by BOX-polymerase chain reaction (PCR), 16S-rDNA sequencing, reverse-phase-high-performance liquid chromatography and liquid chromatography-mass spectrometry analyses. RESULTS: Biosurfactant-producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX-PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant-producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. CONCLUSIONS: Biosurfactant-producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.


Subject(s)
Pest Control, Biological , Piper nigrum/microbiology , Pseudomonas putida/physiology , Soil Microbiology , Surface-Active Agents/metabolism , Phytophthora/drug effects , Piper nigrum/growth & development , Plant Diseases/microbiology , Plant Roots/microbiology , Pseudomonas putida/metabolism , Spores , Surface-Active Agents/pharmacology , Vietnam
9.
J Bacteriol ; 190(8): 2777-89, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17993540

ABSTRACT

Massetolide A is a cyclic lipopeptide (CLP) antibiotic produced by various Pseudomonas strains from diverse environments. Cloning, sequencing, site-directed mutagenesis, and complementation showed that massetolide A biosynthesis in P. fluorescens SS101 is governed by three nonribosomal peptide synthetase (NRPS) genes, designated massA, massB, and massC, spanning approximately 30 kb. Prediction of the nature and configuration of the amino acids by in silico analysis of adenylation and condensation domains of the NRPSs was consistent with the chemically determined structure of the peptide moiety of massetolide A. Structural analysis of massetolide A derivatives produced by SS101 indicated that most of the variations in the peptide moiety occur at amino acid positions 4 and 9. Regions flanking the mass genes contained several genes found in other Pseudomonas CLP biosynthesis clusters, which encode LuxR-type transcriptional regulators, ABC transporters, and an RND-like outer membrane protein. In contrast to most Pseudomonas CLP gene clusters known to date, the mass genes are not physically linked but are organized in two separate clusters, with massA disconnected from massB and massC. Quantitative real-time PCR analysis indicated that transcription of massC is strongly reduced when massB is mutated, suggesting that these two genes function in an operon, whereas transcription of massA is independent of massBC and vice versa. Massetolide A is produced in the early exponential growth phase, and biosynthesis appears not to be regulated by N-acylhomoserine lactone-based quorum sensing. Massetolide A production is essential in swarming motility of P. fluorescens SS101 and plays an important role in biofilm formation.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Bacterial Proteins/genetics , Peptide Synthases/genetics , Peptides, Cyclic/biosynthesis , Pseudomonas fluorescens/physiology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biofilms/growth & development , Cloning, Molecular , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Locomotion , Multigene Family , Mutagenesis, Insertional , Operon , Peptide Synthases/metabolism , Peptides, Cyclic/chemistry , Pseudomonas fluorescens/genetics , RNA, Bacterial/biosynthesis , RNA, Messenger/biosynthesis , Sequence Analysis, DNA
10.
J Appl Microbiol ; 103(4): 1007-20, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17897205

ABSTRACT

AIM: To screen for novel antagonistic Pseudomonas strains producing both phenazines and biosurfactants that are as effective as Pseudomonas aeruginosa PNA1 in the biocontrol of cocoyam root rot caused by Pythium myriotylum. MATERIAL AND RESULTS: Forty pseudomonads were isolated from the rhizosphere of healthy white and red cocoyam plants appearing in natural, heavily infested fields in Cameroon. In vitro tests demonstrated that Py. myriotylum antagonists could be retrieved from the red cocoyam rhizosphere. Except for one isolate, all antagonistic isolates produced phenazines. Results from whole-cell protein profiling showed that the antagonistic isolates are different from other isolated pseudomonads, while BOX-PCR revealed high genomic similarity among them. 16S rDNA sequencing of two representative strains within this group of antagonists confirmed their relatively low similarity with validly described Pseudomonas species. These antagonists are thus provisionally labelled as unidentified Pseudomonas strains. Among the antagonists, Pseudomonas CMR5c and CMR12a were selected because of their combined production of phenazines and biosurfactants. For strain CMR5c also, production of pyrrolnitrin and pyoluteorin was demonstrated. Both CMR5c and CMR12a showed excellent in vivo biocontrol activity against Py. myriotylum to a similar level as Ps. aeruginosa PNA1. CONCLUSION: Pseudomonas CMR5c and CMR12a were identified as novel and promising biocontrol agents of Py. myriotylum on cocoyam, producing an arsenal of antagonistic metabolites. SIGNIFICANCE AND IMPACT OF THE STUDY: Present study reports the identification of two newly isolated fluorescent Pseudomonas strains that can replace the opportunistic human pathogen Ps. aeruginosa PNA1 in the biocontrol of cocoyam root rot and could be taken into account for the suppression of many plant pathogens.


Subject(s)
Pest Control, Biological/methods , Plant Diseases/microbiology , Pseudomonas/metabolism , Pythium , Xanthosoma/microbiology , Crops, Agricultural/microbiology , Culture Media , Electrophoresis, Polyacrylamide Gel/methods , Genes, Bacterial , Phenazines/metabolism , Plant Roots/microbiology , Polymerase Chain Reaction/methods , Pseudomonas/classification , Pseudomonas/genetics , Pseudomonas/isolation & purification
11.
Phytopathology ; 97(10): 1348-55, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18943694

ABSTRACT

ABSTRACT Previously, the zoosporicidal activity and control of Pythium root rot of flower bulbs by Pseudomonas fluorescens SS101 was attributed, in part, to the production of the cyclic lipopeptide surfactant massetolide A. The capacity of strain SS101 and its surfactant-deficient massA mutant 10.24 to suppress populations and root infection by complex Pythium spp. communities resident in orchard soils was assessed on apple and wheat seedlings and on apple rootstocks. Both strains initially became established in soil and persisted in the rhizosphere at similar population densities; however, massA mutant 10.24 typically was detected at higher populations in the wheat rhizosphere and soil at the end of each experiment. Both strains effectively suppressed resident Pythium populations to an equivalent level in the presence or absence of plant roots, and ultimately suppressed Pythium root infection to the same degree on all host plants. When split-root plant assays were employed, neither strain suppressed Pythium spp. infection of the component of the root system physically separated from the bacterium, suggesting that induced systemic resistance did not play a role in Pythium control. Strain SS101 only marginally suppressed in vitro growth of Pythium spp. and growth was not inhibited in the presence of mutant 10.24. When incorporated into the growth medium, the cyclic lipopeptide massetolide A significantly slowed the rate of hyphal expansion for all Pythium spp. examined. Differences in sensitivity were observed among species, with Pythium heterothallicum, P. rostratum, and P. ultimum var. ultimum exhibiting significantly greater tolerance. Pythium spp. populations indigenous to the two soils employed were composed primarily of P. irregulare, P. sylvaticum, and P. ultimum var. ultimum. These Pythium spp. either do not or rarely produce zoospores, which could account for the observation that both SS101 and mutant 10.24 were equally effective in disease control. Collectively, the results showed that (i) Pseudomonas fluorescens SS101 is very effective in controlling diverse Pythium populations on different crops grown in different soils and (ii) production of the cyclic lipopeptide massetolide A does not play a significant role in disease suppression. Other, as yet undefined mechanisms appear to play a significant role in the interaction between P. fluorescens SS101 and soilborne Pythium spp. communities.

12.
Appl Environ Microbiol ; 71(2): 993-1003, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15691958

ABSTRACT

The genotypic diversity of antibiotic-producing Pseudomonas spp. provides an enormous resource for identifying strains that are highly rhizosphere competent and superior for biological control of plant diseases. In this study, a simple and rapid method was developed to determine the presence and genotypic diversity of 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas strains in rhizosphere samples. Denaturing gradient gel electrophoresis (DGGE) of 350-bp fragments of phlD, a key gene involved in DAPG biosynthesis, allowed discrimination between genotypically different phlD(+) reference strains and indigenous isolates. DGGE analysis of the phlD fragments provided a level of discrimination between phlD(+) genotypes that was higher than the level obtained by currently used techniques and enabled detection of specific phlD(+) genotypes directly in rhizosphere samples with a detection limit of approximately 5 x 10(3) CFU/g of root. DGGE also allowed simultaneous detection of multiple phlD(+) genotypes present in mixtures in rhizosphere samples. DGGE analysis of 184 indigenous phlD(+) isolates obtained from the rhizospheres of wheat, sugar beet, and potato plants resulted in the identification of seven phlD(+) genotypes, five of which were not described previously based on sequence and phylogenetic analyses. Subsequent bioassays demonstrated that eight genotypically different phlD(+) genotypes differed substantially in the ability to colonize the rhizosphere of sugar beet seedlings. Collectively, these results demonstrated that DGGE analysis of the phlD gene allows identification of new genotypic groups of specific antibiotic-producing Pseudomonas with different abilities to colonize the rhizosphere of sugar beet seedlings.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Electrophoresis, Agar Gel/methods , Genetic Variation , Plant Roots/microbiology , Pseudomonas/classification , Soil Microbiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Base Sequence , Genotype , Molecular Sequence Data , Phloroglucinol/analogs & derivatives , Phloroglucinol/metabolism , Phylogeny , Polymorphism, Restriction Fragment Length , Pseudomonas/genetics , Pseudomonas/metabolism , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Triticum/microbiology
13.
Microb Ecol ; 48(3): 338-48, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15692854

ABSTRACT

An emerging body of evidence indicates a role for plant genotype as a determinant of the species and genetic composition of the saprophytic microbial community resident to the rhizosphere. In this study, experiments were conducted to determine the capacity of five different wheat cultivars to enhance resident populations and support introduced strains of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent pseudomonads, a group of bacteria known to provide biological control of several soilborne diseases. When soils were cropped with three successive 28-day growth cycles of wheat, the 2,4-DAPG-producing strains were consistently recovered from the rhizosphere of the cultivar Lewjain, and commonly were present at populations higher than those recovered from other wheat cultivars. Based on restriction fragment length polymorphism and sequence analyses of phlD, a key gene involved in 2,4-DAPG production, two previously undefined phlD+ genotypes, referred to as genotypes PfZ and PfY, were discovered. Wheat cultivar Lewjain was the primary source of genotype PfY while cultivar Penawawa yielded the majority of genotype PfZ. Based on 16S rDNA sequence analysis, both new phlD genotypes were classified as P. fluorescens. Comparison of the rhizosphere competence of 2,4-DAPG-producing P. fluorescens Q2-87 (genotype B) and P. fluorescens LR3-A28 (genotype PfY) showed that both strains persisted at similar populations in the rhizosphere of all cultivars tested over a 30 day period when introduced as a seed inoculant. However, when strain LR3-A28 was applied as a soil inoculant, this strain was recovered at higher populations from the rhizosphere of wheat cultivar Lewjain than from the rhizospheres of two other cultivars. No cultivar effects were shown for strain Q2-87. Collectively, these results add further to evidence indicating a degree of specificity in interactions between plant cultivars and specific members of the saprophytic microbial community. Furthermore, as 2,4-DAPG-producing fluorescent Pseudomonas spp. have a central role in the spontaneous reduction in severity of take-all disease of wheat in response to continuous wheat monoculture, we postulate that the use of specific cultivars, such as Lewjain, which possess a superior capacity to enhance resident soil populations of these bacteria may have potential to reduce the length of the monoculture period required to induce natural suppressiveness of soils toward this disease.


Subject(s)
Phloroglucinol/metabolism , Pseudomonas/physiology , Triticum/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/physiology , Biodiversity , Fluorescence , Genetic Variation , Genotype , Phloroglucinol/analogs & derivatives , Phylogeny , Population Density , Pseudomonas/genetics , Pseudomonas/metabolism , Pseudomonas fluorescens/physiology , Soil Microbiology , Triticum/genetics
14.
Environ Microbiol ; 5(12): 1328-40, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14641577

ABSTRACT

The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains isolated from different plant-associated environments. Polymerase chain reaction analysis and Southern hybridization showed that gacA is highly conserved within the genus Pseudomonas: multiple strains of different Pseudomonas species all responded positively to the probe, whereas no response was obtained from 18 other strains representing 14 species that belong to eight different genera of Gram-negative bacteria other than Pseudomonas. Furthermore, from a total of approximately 550 indigenous bacterial isolates obtained from the rhizosphere of wheat, all isolates that hybridized with the gacA probe were classified as Pseudomonas spp. by group-specific primers. Isolates that did not respond with the gacA probe and primers were identified as bacterial genera other than Pseudomonas, including Stenotrophomonas, Cryseomonas and Comamonas spp. These results indicate that gacA can be used as a complementary genetic marker for detection of Pseudomonas spp. in environmental samples. Phylogenetic relationships inferred from the newly sequenced gacA fragments and the sequences of gacA homologues present in the databases, showed six distinct clusters that correspond to the following bacterial families: Pseudomonaceae, Enterobacteriaceae, Alteromonadaceae, Vibrionaceae, Burkholderia and Xanthomonas. Within the Pseudomonadaceae and Enterobacteriaceae, polymorphisms within gacA and its homologues allowed identification of six and five subclusters respectively. Comparison of the gacA gene and GacA protein-based trees with the tree inferred from 16S rDNA sequences yielded a similar overall clustering. These results suggest that gacA and its homologues may provide complementary markers for phylogenetic studies of Pseudomonas spp. and Gram-negative bacteria other than Pseudomonas.


Subject(s)
Bacterial Proteins/genetics , Conserved Sequence , Genes, Regulator , Pseudomonas/genetics , Comamonas/classification , Comamonas/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Evolution, Molecular , Genes, Bacterial , Nucleic Acid Hybridization , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic , Pseudomonas/classification , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Stenotrophomonas/classification , Stenotrophomonas/isolation & purification
15.
Appl Environ Microbiol ; 67(6): 2545-54, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11375162

ABSTRACT

The genotypic diversity that occurs in natural populations of antagonistic microorganisms provides an enormous resource for improving biological control of plant diseases. In this study, we determined the diversity of indigenous 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. occurring on roots of wheat grown in a soil naturally suppressive to take-all disease of wheat. Among 101 isolates, 16 different groups were identified by random amplified polymorphic DNA (RAPD) analysis. One RAPD group made up 50% of the total population of DAPG-producing Pseudomonas spp. Both short- and long-term studies indicated that this dominant genotype, exemplified by P. fluorescens Q8r1-96, is highly adapted to the wheat rhizosphere. Q8r1-96 requires a much lower dose (only 10 to 100 CFU seed(-1) or soil(-1)) to establish high rhizosphere population densities (10(7) CFU g of root(-1)) than Q2-87 and 1M1-96, two genotypically different, DAPG-producing P. fluorescens strains. Q8r1-96 maintained a rhizosphere population density of approximately 10(5) CFU g of root(-1) after eight successive growth cycles of wheat in three different, raw virgin soils, whereas populations of Q2-87 and 1M1-96 dropped relatively quickly after five cycles and were not detectable after seven cycles. In short-term studies, strains Q8r1-96, Q2-87, and 1M1-96 did not differ in their ability to suppress take-all. After eight successive growth cycles, however, Q8r1-96 still provided control of take-all to the same level as obtained in the take-all suppressive soil, whereas Q2-87 and 1M1-96 gave no control anymore. Biochemical analyses indicated that the superior rhizosphere competence of Q8r1-96 is not related to in situ DAPG production levels. We postulate that certain rhizobacterial genotypes have evolved a preference for colonization of specific crops. By exploiting diversity of antagonistic rhizobacteria that share a common trait, biological control can be improved significantly.


Subject(s)
Antifungal Agents/metabolism , Phloroglucinol/metabolism , Plant Roots/microbiology , Pseudomonas fluorescens/metabolism , Triticum/microbiology , Biological Assay , Genetic Variation , Genotype , Pest Control, Biological/methods , Phloroglucinol/analogs & derivatives , Pseudomonas fluorescens/genetics , Soil Microbiology
16.
Appl Environ Microbiol ; 66(5): 1939-46, 2000 May.
Article in English | MEDLINE | ID: mdl-10788364

ABSTRACT

Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the biosynthesis of 2,4-DAPG, were isolated from the rhizosphere of wheat grown in soils from wheat-growing regions of the United States and The Netherlands. To assess the genotypic and phenotypic diversity present in this collection, 138 isolates were compared to 4 previously described 2, 4-DAPG producers. Thirteen distinct genotypes, one of which represented over 30% of the isolates, were differentiated by whole-cell BOX-PCR. Representatives of this group were isolated from eight different soils taken from four different geographic locations. ERIC-PCR gave similar results overall, differentiating 15 distinct genotypes among all of the isolates. In most cases, a single genotype predominated among isolates obtained from each soil. Thirty isolates, representing all of the distinct genotypes and geographic locations, were further characterized. Restriction analysis of amplified 16S rRNA gene sequences revealed only three distinct phylogenetic groups, one of which accounted for 87% of the isolates. Phenotypic analyses based on carbon source utilization profiles revealed that all of the strains utilized 49 substrates and were unable to grow on 12 others. Individually, strains could utilize about two-thirds of the 95 substrates present in Biolog SF-N plates. Multivariate analyses of utilization profiles revealed phenotypic groupings consistent with those defined by the genotypic analyses.


Subject(s)
Bacterial Proteins/genetics , Phylogeny , Pseudomonas/classification , Pseudomonas/genetics , Triticum/microbiology , Anti-Bacterial Agents/biosynthesis , Genetic Variation , Genotype , Phenotype , Phloroglucinol/analogs & derivatives , Phloroglucinol/metabolism , Plant Diseases , Polymerase Chain Reaction/methods , Pseudomonas/isolation & purification , Soil Microbiology
17.
Phytopathology ; 89(6): 470-5, 1999 Jun.
Article in English | MEDLINE | ID: mdl-18944718

ABSTRACT

ABSTRACT The role of antibiotics in biological control of soilborne pathogens, and more generally in microbial antagonism in natural disease-suppressive soils, often has been questioned because of the indirect nature of the supporting evidence. In this study, a protocol for high pressure liquid chromatography/mass spectrometry is described that allowed specific identification and quantitation of the antibiotic 2,4-diacetylphloroglucinol (Phl) produced by naturally occurring fluorescent Pseudomonas spp. on roots of wheat grown in a soil suppressive to take-all of wheat. These results provide, for the first time, biochemical support for the conclusion of previous work that Phl-producing fluorescent Pseudomonas spp. are key components of the natural biological control that operates in take-all-suppressive soils in Washington State. This study also demonstrates that the total amount of Phl produced on roots of wheat by P. fluorescens strain Q2-87, at densities ranging from approximately 10(5) to 10(7) CFU/g of root, is proportional to its rhizosphere population density and that Phl production per population unit is a constant (0.62 ng/10(5) CFU). Thus, Phl production in the rhizosphere of wheat is strongly related to the ability of the introduced strain to colonize the roots.

18.
Appl Environ Microbiol ; 63(3): 881-7, 1997 Mar.
Article in English | MEDLINE | ID: mdl-16535555

ABSTRACT

The antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. In this study, we described primers and probes that enable specific and efficient detection of a wide variety of fluorescent Pseudomonas strains that produce various phenazine antibiotics or Phl. PCR analysis and Southern hybridization demonstrated that specific genes within the biosynthetic loci for Phl and PCA are conserved among various Pseudomonas strains of worldwide origin. The frequency of Phl- and PCA-producing fluorescent pseudomonads was determined on roots of wheat grown in three soils suppressive to take-all disease of wheat and four soils conducive to take-all by colony hybridization followed by PCR. Phenazine-producing strains were not detected on roots from any of the soils. However, Phl-producing fluorescent pseudomonads were isolated from all three take-all-suppressive soils at densities ranging from approximately 5 x 10(sup5) to 2 x 10(sup6) CFU per g of root. In the complementary conducive soils, Phl-producing pseudomonads were not detected or were detected at densities at least 40-fold lower than those in the suppressive soils. We speculate that fluorescent Pseudomonas spp. that produce Phl play an important role in the natural suppressiveness of these soils to take-all disease of wheat.

19.
J Appl Bacteriol ; 79(5): 569-77, 1995 Nov.
Article in English | MEDLINE | ID: mdl-8567494

ABSTRACT

The potential of polymerase chain reaction (PCR) for verifying the identity of colonies stained by the immunofluorescence colony-staining (IFC) procedure was investigated. Using primers directed against conserved sequences of the pectate lyase-genes coding for isozymes PLa, PLd and PLe of Erwinia chrysanthemi, the authors confirmed the identity of 96% of 20 fluorescent target colonies, punched from IFC-stained samples with pure cultures. In pour plates with mixtures of Erw. chrysanthemi and non-target colonies from potato peel extracts, the identity of 90% of 113 target colonies was confirmed. Using primers directed against sequences of the ferric-pseudobactin receptor gene pupA of Pseudomonas putida WCS358, the identity of 96% of 22 target colonies was confirmed in IFC-stained samples with pure cultures. In pour plates with mixtures of Ps. putida WCS358 and non-target bacteria from compost extracts, the identity of 59% of 108 fluorescent colonies was confirmed by PCR. It was shown that components from non-target bacteria lowered the threshold level of PCR for Ps. putida WCS358 100-fold.


Subject(s)
Dickeya chrysanthemi/genetics , Fluorescent Antibody Technique/methods , Polymerase Chain Reaction/methods , Pseudomonas putida/genetics , Colony Count, Microbial , DNA Primers , DNA, Bacterial/analysis , Dickeya chrysanthemi/isolation & purification , Plants/microbiology , Pseudomonas putida/isolation & purification , Sensitivity and Specificity
20.
Appl Environ Microbiol ; 60(4): 1184-90, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8017914

ABSTRACT

For application of genetically engineered fluorescent Pseudomonas spp., specific markers are required for monitoring of wild-type Pseudomonas strains and their genetically modified derivatives in natural environments. In this study, the specific siderophore receptor PupA of plant growth-promoting Pseudomonas putida WCS358 was used as a marker to monitor wild-type strain WCS358. After introduction into natural soil and rhizosphere environments, strain WCS358 could be recovered efficiently on a medium amended with 300 microM pseudobactin 358. Although low population densisties of indigenous pseudomonads (less than or equal to 10(3)/g of soil or root) were recovered on the pseudobactin 358-amended medium, subsequent agglutination assays with a WCS358-specific polyclonal antiserum enabled accurate monitoring of populations of wild-type strain WCS358 over a range of approximately 10(3) to 10(7) CFU/g of soil or root. Genetic analysis of the background population by PCR and Southern hybridization revealed that natural occurrence of the pupA gene was limited to a very small number of indigenous Pseudomonas spp. which are very closely related to P. putida WCS358. The PupA marker system enabled the study of differences in rhizosphere colonization among wild-type strain WCS358, rifampin-resistant derivative WCS358rr, and Tn5 mutant WCS358::xylE. Chromosomally mediated rifampin resistance did not affect the colonizing ability of P. putida WCS358. However, Tn5 mutant WCS358::xylE colonized the radish rhizosphere significantly less than did its parental strain.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Proteins/analysis , Environmental Monitoring/methods , Plants/microbiology , Pseudomonas putida/isolation & purification , Receptors, Cell Surface/analysis , Soil Microbiology , Bacterial Proteins/genetics , Base Sequence , Biomarkers , Blotting, Southern , DNA, Bacterial/analysis , Drug Resistance, Microbial , Molecular Sequence Data , Polymerase Chain Reaction , Pseudomonas putida/chemistry , Pseudomonas putida/genetics , Receptors, Cell Surface/genetics , Rifampin/pharmacology , Solanum tuberosum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...