Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28405761

ABSTRACT

Sensory adaptation is characterized by a reduction in the firing frequency of neurons to prolonged stimulation, also called spike frequency adaptation. This has been documented for sensory neurons of the visual, olfactory, electrosensory, and auditory system both in response to constant-amplitude and to sinusoidal stimuli, but has thus far not been described systematically for the lateral line system. We recorded neuronal activity from primary afferent nerve fibres in the lateral line in goldfish in response to sinusoidal wave stimuli. Depending on stimulus characteristics, afferent fibre responses exhibited a distinct onset followed by a decline in firing rate to an apparent steady-state level, i.e., they exhibited adaptation. The degree of adaptation, measured as the percent decrease in firing rate between onset and steady-state, increased with stimulus amplitude and frequency and with increasing steepness of the rising flank of the stimulus. This may in part be due to the velocity and/or acceleration sensitivity of the lateral line receptors. The time course of the response decline, i.e., the time course of adaptation was best-fit by a power function. This is consistent with the previous studies on spike frequency adaptation in sensory afferents of weakly electric fish.


Subject(s)
Adaptation, Physiological/physiology , Goldfish/physiology , Lateral Line System/physiology , Animals , Nerve Fibers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...