Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 753: 141984, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-32906047

ABSTRACT

Sediment removal from eutrophicated shallow lakes may not only be an effective method for lake restoration but also provides the potential for recycling nutrients from sediments to crop production. However, finding a suitable strategy for sustainably reusing the sediment remains a challenge. Therefore, current study focused on the best practices in applying the sediment from a shallow eutrophicated lake to the soil in terms of grass yield, nutrient uptake, and nutrient leaching. During a nine-month lysimeter experiment, 100-cm high columns were filled with six combinations of soil, sediment, and biochar, with or without meat bone meal organic fertilizer. Aboveground biomass, root mass distribution in soil, nutrient concentration, phosphorus (P) uptake of perennial ryegrass (Lolium perenne L.) along with easily soluble nutrients in the growing medium, and leached mineral nitrogen (N) and P levels were measured. Plant growth conditions were improved by sediment additions, as the yield and P uptake of ryegrass nearly doubled in treatments containing sediment compared to the control soil. While the sediment was richer in macro and micronutrients (e.g. P and N) compared to the soil, the leached N and P levels from both treatments were almost equivalent (N < 830 mg m-2 and P < 3 mg m-2). In addition, applying a 2-cm layer of biochar between the sediment and soil reduced P and N leaching by 50%. According to the results, applying a 75-cm thick layer of sediments on agricultural sandy loam soils surrounding the lake seems a promising practice for improving plant yield and soil nutrient status without increasing of P and N leaching from soil.


Subject(s)
Agriculture , Lakes , Fertilizers/analysis , Nitrogen/analysis , Nutrients , Phosphorus , Soil
2.
Sci Total Environ ; 562: 678-689, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27115621

ABSTRACT

Soil fertilization with animal manure or its digestate may facilitate an important antibiotic resistance dissemination route from anthropogenic sources to the environment. This study examines the effect of mineral fertilizer (NH4NO3), cattle slurry and cattle slurry digestate amendment on the abundance and proportion dynamics of five antibiotic resistance genes (ARGs) and two classes of integron-integrase genes (intI1 and intI2) in agricultural grassland soil. Fertilization was performed thrice throughout one vegetation period. The targeted ARGs (sul1, tetA, blaCTX-M, blaOXA2 and qnrS) encode resistance to several major antibiotic classes used in veterinary medicine such as sulfonamides, tetracycline, cephalosporins, penicillin and fluoroquinolones, respectively. The non-fertilized grassland soil contained a stable background of tetA, blaCTX-M and sul1 genes. The type of applied fertilizer significantly affected ARGs and integron-integrase genes abundances and proportions in the bacterial community (p<0.001 in both cases), explaining 67.04% of the abundance and 42.95% of the proportion variations in the grassland soil. Both cattle slurry and cattle slurry digestate proved to be considerable sources of ARGs, especially sul1, as well as integron-integrases. Sul1, intI1 and intI2 levels in grassland soil were elevated in response to each organic fertilizer's application event, but this increase was followed by a stage of decrease, suggesting that microbes possessing these genes were predominantly entrained into soil via cattle slurry or its digestate application and had somewhat limited survival potential in a soil environment. However, the abundance of these three target genes did not decrease to a background level by the end of the study period. TetA was most abundant in mineral fertilizer treated soil and blaCTX-M in cattle slurry digestate amended soil. Despite significantly different abundances, the abundance dynamics of bacteria possessing these genes were similar (p<0.05 in all cases) in different treatments and resembled the dynamics of the whole bacterial community abundance in each soil treatment.


Subject(s)
Agriculture/methods , Drug Resistance, Microbial/genetics , Environmental Monitoring , Fertilizers , Grassland , Genes, Bacterial , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...