Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Surg Endosc ; 36(12): 9215-9223, 2022 12.
Article in English | MEDLINE | ID: mdl-35941306

ABSTRACT

BACKGROUND: The potential role and benefits of AI in surgery has yet to be determined. This study is a first step in developing an AI system for minimizing adverse events and improving patient's safety. We developed an Artificial Intelligence (AI) algorithm and evaluated its performance in recognizing surgical phases of laparoscopic cholecystectomy (LC) videos spanning a range of complexities. METHODS: A set of 371 LC videos with various complexity levels and containing adverse events was collected from five hospitals. Two expert surgeons segmented each video into 10 phases including Calot's triangle dissection and clipping and cutting. For each video, adverse events were also annotated when present (major bleeding; gallbladder perforation; major bile leakage; and incidental finding) and complexity level (on a scale of 1-5) was also recorded. The dataset was then split in an 80:20 ratio (294 and 77 videos), stratified by complexity, hospital, and adverse events to train and test the AI model, respectively. The AI-surgeon agreement was then compared to the agreement between surgeons. RESULTS: The mean accuracy of the AI model for surgical phase recognition was 89% [95% CI 87.1%, 90.6%], comparable to the mean inter-annotator agreement of 90% [95% CI 89.4%, 90.5%]. The model's accuracy was inversely associated with procedure complexity, decreasing from 92% (complexity level 1) to 88% (complexity level 3) to 81% (complexity level 5). CONCLUSION: The AI model successfully identified surgical phases in both simple and complex LC procedures. Further validation and system training is warranted to evaluate its potential applications such as to increase patient safety during surgery.


Subject(s)
Cholecystectomy, Laparoscopic , Gallbladder Diseases , Humans , Cholecystectomy, Laparoscopic/methods , Artificial Intelligence , Gallbladder Diseases/surgery , Dissection
2.
Gastrointest Endosc ; 94(6): 1099-1109.e10, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34216598

ABSTRACT

BACKGROUND AND AIMS: Colorectal cancer is a leading cause of death. Colonoscopy is the criterion standard for detection and removal of precancerous lesions and has been shown to reduce mortality. The polyp miss rate during colonoscopies is 22% to 28%. DEEP DEtection of Elusive Polyps (DEEP2) is a new polyp detection system based on deep learning that alerts the operator in real time to the presence and location of polyps. The primary outcome was the performance of DEEP2 on the detection of elusive polyps. METHODS: The DEEP2 system was trained on 3611 hours of colonoscopy videos derived from 2 sources and was validated on a set comprising 1393 hours from a third unrelated source. Ground truth labeling was provided by offline gastroenterologist annotators who were able to watch the video in slow motion and pause and rewind as required. To assess applicability, stability, and user experience and to obtain some preliminary data on performance in a real-life scenario, a preliminary prospective clinical validation study was performed comprising 100 procedures. RESULTS: DEEP2 achieved a sensitivity of 97.1% at 4.6 false alarms per video for all polyps and of 88.5% and 84.9% for polyps in the field of view for less than 5 and 2 seconds, respectively. DEEP2 was able to detect polyps not seen by live real-time endoscopists or offline annotators in an average of .22 polyps per sequence. In the clinical validation study, the system detected an average of .89 additional polyps per procedure. No adverse events occurred. CONCLUSIONS: DEEP2 has a high sensitivity for polyp detection and was effective in increasing the detection of polyps both in colonoscopy videos and in real procedures with a low number of false alarms. (Clinical trial registration number: NCT04693078.).


Subject(s)
Adenomatous Polyps , Colonic Polyps , Colorectal Neoplasms , Artificial Intelligence , Colonic Polyps/diagnosis , Colonoscopy , Colorectal Neoplasms/diagnosis , Humans , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...