Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 32(24): 2851-8, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24641959

ABSTRACT

BACKGROUND: The development of safe, effective, and affordable vaccines has become a global effort due to its vast impact on overall world health conditions. A brief overview of vaccine characterization techniques, especially in the area of high-resolution mass spectrometry, is presented. It is highly conceivable that the proper use of advanced technologies such as high-resolution mass spectrometry, along with the appropriate chemical and physical property evaluations, will yield tremendous in-depth scientific understanding for the characterization of vaccines in various stages of vaccine development. This work presents the physicochemical and biological characterization of cancer vaccine Racotumomab/alumina, a murine anti-idiotypic antibody that mimics N-glycolyl-GM3 gangliosides. This antibody has been tested as an anti-idiotypic cancer vaccine, adjuvated in Al(OH)3, in several clinical trials for melanoma, breast, and lung cancer. METHODS: Racotumomab was obtained from ascites fluid, transferred to fermentation in stirred tank at 10 L and followed to a scale up to 41 L. The mass spectrometry was used for the determination of intact molecule, light and heavy chains masses; amino acids sequence analysis, N- and C-terminal, glycosylation and posttranslational modifications. Also we used the DLS for the size distribution and zeta potential analysis. The biological analyses were performed in mice and chickens. RESULTS: We observed differences in glycosylation pattern, charge heterogeneity and structural stability between in vivo-produced and bioreactor-obtained Racotumomab products. Interestingly, these modifications had no significant impact on the immune responses elicited in two different animal models. CONCLUSIONS: We are demonstrated that this approach could potentially be more efficient and effective for supporting vaccine research and development.


Subject(s)
Antibodies, Anti-Idiotypic/chemistry , Antibodies, Monoclonal/chemistry , Cancer Vaccines/chemistry , Animals , Antibodies, Monoclonal, Murine-Derived , Bioreactors , Chickens , Chromatography, High Pressure Liquid , Fermentation , Glycosylation , Mass Spectrometry , Mice , Oxidation-Reduction , Particle Size , Peptide Mapping , Protein Processing, Post-Translational , Technology, Pharmaceutical/methods , Vaccine Potency
SELECTION OF CITATIONS
SEARCH DETAIL
...