Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 17(7): 1025-33, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26819085

ABSTRACT

Nanoparticles (NPs) and molecules can be analyzed by inverse fluorescence correlation spectroscopy (iFCS) as they pass through an open detection volume, displacing fractions of the fluorescence-emitting solution in which they are dissolved. iFCS does not require the NPs or molecules to be labeled. However, fluorophores in µm-mm concentrations are needed for the solution signal. Here, we instead use coherent anti-Stokes Raman scattering (CARS) from plain water molecules as the signal from the solution. By this fully label-free approach, termed inverse CARS-based correlation spectroscopy (iCARS-CS), NPs that are a few tenths of nm in diameter and at pM concentrations can be analyzed, and their absolute volumes/concentrations can be determined. Likewise, lipid vesicles can be analyzed as they diffuse/flow through the detection volume by using CARS fluctuations from the surrounding water molecules. iCARS-CS could likely offer a broadly applicable, label-free characterization technique of, for example, NPs, small lipid exosomes, or microparticles in biomolecular diagnostics and screening, and can also utilize CARS signals from biologically relevant media other than water.

2.
Rev Sci Instrum ; 86(3): 035110, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25832278

ABSTRACT

Methods for photoacoustic signal measurement, rectification, and analysis for 85 µm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...