Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39061306

ABSTRACT

In Mycobacterium tuberculosis, molecular predictions of ethambutol resistance rely primarily on the detection of mutations within embB. However, discordance between embB406 mutations and gold standard phenotypic drug sensitivity testing (DST) questions the significance of embB406 mutations used in molecular DST. This study tabulates embB mutations found in Canadian M. tuberculosis isolates and evaluates the impact of specific mutations on ethambutol resistance. The National Reference Centre for Mycobacteriology culture collection (n = 2796) was screened for isolates with embB mutations. Phenotypic DST was performed on the BACTEC™ MGIT™ 960 at ethambutol concentrations of 2-5 µg/mL. Whole genome sequencing was used for drug resistance predictions, phylogenomics and single nucleotide polymorphism analysis. Detection of resistance-associated embB mutations corresponded to a positive predictive value of 64.3%, negative predictive value of 99.2%, 98.7% specificity, and 73.3% sensitivity compared to phenotypic DST. Two embB406 mutation subtypes (Gly406Asp, Gly406Ala) were found among 16 isolates, of which 12 were sensitive at 5 µg/mL ethambutol with variable resistance between 2-4 µg/mL. A novel frameshift mutation in regulator embR (Gln258fs) was found in nine isolates. Mutations in embB406 were associated with low-level ethambutol resistance undetectable at the recommended critical concentration (5 µg/mL). These novel mutations may exacerbate variability in ethambutol resistance.

2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892433

ABSTRACT

Phenotypic susceptibility testing of the Mycobacterium tuberculosis complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022. For this 5-year retrospective analysis, the WGS sensitivity for predicting resistance for isoniazid, rifampin, ethambutol, and pyrazinamide using Mykrobe was 86.7%, 100.0%, 100.0%, and 47.8%, respectively, and the specificity was 99.4%, 99.5%, 98.7%, and 99.9%, respectively. The predictive values improved slightly using Mykrobe corrections applied using TB Profiler, i.e., the WGS sensitivity for isoniazid, rifampin, ethambutol, and pyrazinamide was 92.31%, 100%, 100%, and 57.78%, respectively, and the specificity was 99.63%. 99.45%, 98.93%, and 99.93%, respectively. The utilization of WGS-based testing addresses concerns regarding test turnaround time and enables analysis for MTBC member identification, antimicrobial resistance prediction, detection of mixed cultures, and strain genotyping, all through a single laboratory test. WGS enables rapid resistance detection compared to traditional phenotypic susceptibility testing methods using the WHO TB mutation catalog, providing an insight into lesser-known mutations, which should be added to prediction databases as high-confidence mutations are recognized. The WGS-based methods can support TB elimination efforts in Canada and globally by ensuring the early start of appropriate treatment, rapidly limiting the spread of TB outbreaks.


Subject(s)
Antitubercular Agents , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Whole Genome Sequencing/methods , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests/methods , Retrospective Studies , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Ethambutol/pharmacology , Isoniazid/pharmacology , Pyrazinamide/pharmacology , Tuberculosis/microbiology , Tuberculosis/drug therapy , Rifampin/pharmacology
3.
Trends Microbiol ; 21(11): 583-93, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24011860

ABSTRACT

Viruses of the Mononegavirales have helical nucleocapsids containing a single-stranded negative-sense RNA genome complexed with the nucleoprotein and several other virus-encoded proteins. This RNA-protein complex acts as the template for replication and transcription during infection. Recent structural data has advanced our understanding of how these functions are achieved in filoviruses, which include dangerous pathogens such as Ebola virus. Polyploid filoviruses package multiple genome copies within strikingly long filamentous viral envelopes, which must be flexible to avoid breakage of the 19kb non-segmented genomic RNA. We review how the structure of filoviruses and paramyxoviruses permits this morphological flexibility in comparison to rhabdoviruses that have short, bullet-shaped virions with relatively rigid envelopes.


Subject(s)
Filoviridae/physiology , Filoviridae/ultrastructure , Macromolecular Substances/metabolism , Nucleocapsid/metabolism , Rhabdoviridae/physiology , Rhabdoviridae/ultrastructure , Virus Assembly , Models, Biological , Models, Molecular
4.
PLoS One ; 7(1): e29608, 2012.
Article in English | MEDLINE | ID: mdl-22247782

ABSTRACT

BACKGROUND: Filoviruses, including Ebola virus, are unusual in being filamentous animal viruses. Structural data on the arrangement, stoichiometry and organisation of the component molecules of filoviruses has until now been lacking, partially due to the need to work under level 4 biological containment. The present study provides unique insights into the structure of this deadly pathogen. METHODOLOGY AND PRINCIPAL FINDINGS: We have investigated the structure of Ebola virus using a combination of cryo-electron microscopy, cryo-electron tomography, sub-tomogram averaging, and single particle image processing. Here we report the three-dimensional structure and architecture of Ebola virus and establish that multiple copies of the RNA genome can be packaged to produce polyploid virus particles, through an extreme degree of length polymorphism. We show that the helical Ebola virus inner nucleocapsid containing RNA and nucleoprotein is stabilized by an outer layer of VP24-VP35 bridges. Elucidation of the structure of the membrane-associated glycoprotein in its native state indicates that the putative receptor-binding site is occluded within the molecule, while a major neutralizing epitope is exposed on its surface proximal to the viral envelope. The matrix protein VP40 forms a regular lattice within the envelope, although its contacts with the nucleocapsid are irregular. CONCLUSIONS: The results of this study demonstrate a modular organization in Ebola virus that accommodates a well-ordered, symmetrical nucleocapsid within a flexible, tubular membrane envelope.


Subject(s)
Ebolavirus/ultrastructure , Nucleocapsid Proteins/chemistry , Nucleocapsid/chemistry , RNA, Viral/chemistry , Cryoelectron Microscopy , Ebolavirus/genetics , Genome, Viral , Nucleocapsid/genetics , Nucleocapsid Proteins/genetics , Ploidies , RNA, Viral/genetics , Virion
SELECTION OF CITATIONS
SEARCH DETAIL
...