ABSTRACT
This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenethylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue's elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples.
Subject(s)
Collagen/chemistry , Molecular Dynamics Simulation , Pericardium/chemistry , Animals , Carbon Isotopes , Cattle , Magnetic Resonance Spectroscopy/standards , Molecular Structure , Reference StandardsABSTRACT
In this work we report on a study of the morphological changes of LDL induced in vitro by metallic ions (Cu(2+) and Fe(3+)). These modifications were characterized by transmission electron microscopy, nuclear magnetic resonance and the Z-scan technique. The degree of oxidative modification of LDL was determined by the TBARS and lipid hydroperoxides assays. It is shown that distinct pathways for modifying lipoproteins lead to different morphological transformations of the particles characterized by changes in size and/or shape of the resulting particles, and by the tendency to induce aggregation of the particles. There were no evidence of melting of particles promoted by oxidative processes with Cu and Fe.
Subject(s)
Copper/chemistry , Iron/chemistry , Lipoproteins, LDL/chemistry , Cations/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Oxidation-Reduction , Thiobarbituric Acid Reactive Substances/chemistryABSTRACT
Scorpion envenomation is a life-threatening condition, especially in children and elderly individuals affected by respiratory and cardiovascular diseases. In this study, the toxic effects of median lethal dose (LD50) injections of Mesobuthus eupeus (Me) venom on the heart and lungs of anesthetized rabbits were investigated. Six rabbits were selected and alterations in their electrocardiogram, heart rate, respiration and blood pressure before and after venom injection were recorded. Cardiac troponin T (cTnT), creatinine kinase muscle-brain fraction (CK-MB) and lactate dehydrogenase (LDH) were measured at 0, 1 and 3 hours after envenomation and pathology studies were carried out postmortem. All the animals showed signs and symptoms of envenomation within 40 minutes and died 3 to 3.5 hours after venom injection. Pathology studies revealed alveolar edema in 100 percent of the rabbits and myocardial infarction in 16 percent. The main histopathological changes were myocytolysis, coagulation necrosis, focal hemorrhage, thrombus formation both in myocardium and on endocardial surfaces as well as inflammatory infiltrates in the heart and hemorrhage, vascular thrombus and interstitial inflammation in the lungs. ECG monitoring of rabbits showed ST elevation, ST depression and inverted T and Q waves. In addition, although cTnT levels increased in 16 percent of the animals and serum LDH was also augmented, none of these changes was statistically significant. The enzyme CK-MB also did not show any change after Me venom injection. In conclusion, the results of this study showed that Me venom killed animals in less than 3.5 hours through severe pulmonary damage and it appears that the deaths could not be attributed to cardiovascular lesions. Therefore, Me venom effects on the lungs are so important that they appear to be independent of heart damage.(AU)
Subject(s)
Animals , Scorpion Venoms/administration & dosage , Scorpion Venoms/blood , Scorpion Venoms/poisoning , Troponin T/adverse effects , Troponin T/analysis , Troponin T/poisoning , Creatine Kinase, MB Form/adverse effects , Creatine Kinase, MB Form/analysis , Creatine Kinase, MB Form/poisoning , Scorpions , L-Lactate Dehydrogenase/adverse effects , L-Lactate Dehydrogenase/analysis , L-Lactate Dehydrogenase/poisoning , Fluorescent Antibody Technique/methods , Fluorescent Antibody Technique/veterinaryABSTRACT
In this work we report on a study of the morphological changes of LDL induced in vitro by metallic ions (Cu2+ and Fe3+). These modifications were characterized by transmission electron microscopy, nuclear magnetic resonance and the Z-scan technique. The degree of oxidative modification of LDL was determined by the TBARS and lipid hydroperoxides assays. It is shown that distinct pathways for modifying lipoproteins lead to different morphological transformations of the particles characterized by changes in size and/or shape of the resulting particles, and by the tendency to induce aggregation of the particles. There were no evidence of melting of particles promoted by oxidative processes with Cu and Fe.
Subject(s)
Male , Female , Humans , LipoproteinsABSTRACT
Scorpion envenomation is a life-threatening condition, especially in children and elderly individuals affected by respiratory and cardiovascular diseases. In this study, the toxic effects of median lethal dose (LD50) injections of Mesobuthus eupeus (Me) venom on the heart and lungs of anesthetized rabbits were investigated. Six rabbits were selected and alterations in their electrocardiogram, heart rate, respiration and blood pressure before and after venom injection were recorded. Cardiac troponin T (cTnT), creatinine kinase muscle-brain fraction (CK-MB) and lactate dehydrogenase (LDH) were measured at 0, 1 and 3 hours after envenomation and pathology studies were carried out postmortem. All the animals showed signs and symptoms of envenomation within 40 minutes and died 3 to 3.5 hours after venom injection. Pathology studies revealed alveolar edema in 100 percent of the rabbits and myocardial infarction in 16 percent. The main histopathological changes were myocytolysis, coagulation necrosis, focal hemorrhage, thrombus formation both in myocardium and on endocardial surfaces as well as inflammatory infiltrates in the heart and hemorrhage, vascular thrombus and interstitial inflammation in the lungs. ECG monitoring of rabbits showed ST elevation, ST depression and inverted T and Q waves. In addition, although cTnT levels increased in 16 percent of the animals and serum LDH was also augmented, none of these changes was statistically significant. The enzyme CK-MB also did not show any change after Me venom injection. In conclusion, the results of this study showed that Me venom killed animals in less than 3.5 hours through severe pulmonary damage and it appears that the deaths could not be attributed to cardiovascular lesions. Therefore, Me venom effects on the lungs are so important that they appear to be independent of heart damage.(AU)
Subject(s)
Animals , Phosphotransferases , Scorpion Venoms , Cardiovascular Diseases , Troponin T , Scorpion Stings , L-Lactate Dehydrogenase , Lethal Dose 50ABSTRACT
O artigo não apresenta resumo.
ABSTRACT
O artigo não apresenta resumo.