Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 69(6): 1185-90, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19549618

ABSTRACT

OBJECTIVES: Synovial fibroblasts and osteoblasts generate active glucocorticoids by means of the 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) enzyme. This activity increases in response to proinflammatory cytokines or glucocorticoids. During inflammatory arthritis synovium and bone are exposed to both these factors. This study hypothesised that glucocorticoids magnify the effects of inflammatory cytokines on local glucocorticoid production in both synovium and bone. METHODS: The effects of inflammatory cytokines (IL-1beta/tumour necrosis factor alpha; TNFalpha) and glucocorticoids, alone or combined, were assessed on the expression and activity of 11beta-HSD1 in primary synovial fibroblasts, primary human osteoblasts and MG-63 osteosarcoma cells. A range of other target genes and cell types were used to examine the specificity of effects. Functional consequences were assessed using IL-6 ELISA. RESULTS: In synovial fibroblasts and osteoblasts, treatment with cytokines or glucocorticoids in isolation induced 11beta-HSD1 expression and activity. However, in combination, 11beta-HSD1 expression, activity and functional consequences were induced synergistically to a level not seen with isolated treatments. This effect was seen in normal skin fibroblasts but not foreskin fibroblasts or adipocytes and was only seen for the 11beta-HSD1 gene. Synergistic induction had functional consequences on IL-6 production. CONCLUSIONS: Combined treatment with inflammatory cytokines and glucocorticoids synergistically induces 11beta-HSD1 expression and activity in synovial fibroblasts and osteoblasts, providing a mechanism by which synovium and bone can interact to enhance anti-inflammatory responses by increasing localised glucocorticoid levels. However, the synergistic induction of 11beta-HSD1 might also cause detrimental glucocorticoid accumulation in bone or surrounding tissues.


Subject(s)
Cytokines/pharmacology , Glucocorticoids/biosynthesis , Osteoblasts/drug effects , Synovial Membrane/drug effects , 11-beta-Hydroxysteroid Dehydrogenase Type 1/biosynthesis , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Cell Differentiation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation, Enzymologic/drug effects , Glucocorticoids/pharmacology , Humans , Inflammation Mediators/pharmacology , Osteoblasts/cytology , Osteoblasts/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Tumor Cells, Cultured
2.
Ann Rheum Dis ; 67(9): 1204-10, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18420938

ABSTRACT

BACKGROUND: Isolated, primary synovial fibroblasts generate active glucocorticoids through expression of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). This enzyme produces cortisol from inactive cortisone (and prednisolone from prednisone). OBJECTIVE: To determine how intact synovial tissue metabolises glucocorticoids and to identify the local and systemic consequences of this activity by examination of glucocorticoid metabolism in patients with rheumatoid arthritis (RA). METHODS: Synovial tissue was taken from patients with RA during joint replacement surgery. Glucocorticoid metabolism in explants was assessed by thin-layer chromatography and specific enzyme inhibitors. RT-PCR and immunohistochemistry were used to determine expression and distribution of 11beta-HSD enzymes. Systemic glucocorticoid metabolism was examined in patients with RA using gas chromatography/mass spectrometry. RESULTS: Synovial tissue synthesised cortisol from cortisone, confirming functional 11beta-HSD1 expression. In patients with RA, enzyme activity correlated with donor erythrocyte sedimentation rate (ESR). Synovial tissues could also convert cortisol back to cortisone. Inhibitor studies and immunohistochemistry suggested this was owing to 11beta-HSD2 expression in synovial macrophages, whereas 11beta-HSD1 expression occurred primarily in fibroblasts. Synovial fluids exhibited lower cortisone levels than matched serum samples, indicating net local steroid activation. Urinary analyses indicated high 11beta-HSD1 activity in untreated patients with RA compared with controls and a significant correlation between total body 11beta-HSD1 activity and ESR. CONCLUSIONS: Synovial tissue metabolises glucocorticoids, the predominant effect being glucocorticoid activation, and this increases with inflammation. Endogenous glucocorticoid production in the joint is likely to have an impact on local inflammation and bone integrity.


Subject(s)
Arthritis, Rheumatoid/metabolism , Glucocorticoids/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/physiology , Aged , Arthritis, Rheumatoid/enzymology , Cortisone/antagonists & inhibitors , Cortisone/pharmacology , Enzyme Inhibitors/pharmacology , Female , Humans , Hydrocortisone/pharmacology , Interleukin-6/biosynthesis , Male , Middle Aged , Osteoarthritis/enzymology , Osteoarthritis/metabolism , Synovial Fluid/metabolism , Synovial Membrane/drug effects , Synovial Membrane/enzymology , Synovial Membrane/metabolism , Tissue Culture Techniques
3.
J Steroid Biochem Mol Biol ; 85(2-5): 415-21, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12943730

ABSTRACT

The enzymes 11beta-hydroxysteroid dehydrogenase type 1 and 2 (11beta-HSD1 and 2) have well-defined roles in the tissue-specific metabolism of glucocorticoids which underpin key endocrine mechanisms such as adipocyte differentiation (11beta-HSD1) and mineralocorticoid action (11beta-HSD2). However, in recent studies we have shown that the effects of 11beta-HSD1 and 2 are not restricted to distinct tissue-specific hormonal functions. Studies of normal fetal and adult tissues, as well as their tumor equivalents, have shown a further dichotomy in 11beta-HSD expression and activity. Specifically, most normal glucocorticoid receptor (GR)-rich tissues such as adipose tissue, bone, and pituitary cells express 11beta-HSD1, whereas their fetal equivalents and tumors express 11beta-HSD2. We have therefore postulated that the ability of 11beta-HSD1 to generate cortisol acts as an autocrine anti-proliferative, pro-differentiation stimulus in normal adult tissues. In contrast, the cortisol-inactivating properties of 11beta-HSD2 lead to pro-proliferative effects, particularly in tumors. This proposal is supported by experiments in vitro which have demonstrated divergent effects of 11beta-HSD1 and 2 on cell proliferation. Current studies are aimed at (1) characterizing the underlying mechanisms for a "switch" in 11beta-HSD isozyme expression in tumors; (2) defining the molecular targets for glucocorticoids as regulators of cell proliferation; (3) evaluating the potential for targeting glucocorticoid metabolism as therapy for some cancers. These and other issues are discussed in the present review.


Subject(s)
Cell Division/physiology , Cell Transformation, Neoplastic , Hydroxysteroid Dehydrogenases/metabolism , Neoplasms/enzymology , 11-beta-Hydroxysteroid Dehydrogenases , Animals , Humans , Isoenzymes/metabolism , Models, Biological
4.
Oncogene ; 22(11): 1663-7, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12642869

ABSTRACT

The physiological effects of glucocorticoids (GCs) are, at least in part, mediated by inhibition of cell proliferation. Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert cortisol (F) and inactive cortisone (E), and are thus able to modulate GC action at an autocrine level. Previously, we have demonstrated absent expression of 11 beta-HSD2 in normal pituitaries; however, in a small number of pituitary tumors analysed, 11 beta-HSD2 was readily demonstrable. Here we have used real-time RT-PCR to quantify expression of mRNA for 11 beta-HSD1 and 2 in 105 human pituitary tumors and have performed enzyme expression and activity studies in primary pituitary cultures. Overall, pituitary tumors expressed lower levels of 11 beta-HSDl mRNA compared with normals (0.2-fold, P<0.05). In contrast, expression of 11 beta-HSD2 mRNA was 9.8-fold greater in tumors than in normals (P<0.001). Enzyme assays showed significant 11 beta-HSD2 activity (71.9+/-22.3 pmol/h/mg protein (mean+/-s.d.)) but no detectable 11 beta-HSDl activity. Proliferation assays showed that addition of glycyrrhetinic acid (an 11 beta-HSD2 inhibitor) resulted in a 30.3+/-7.7% inhibition of cell proliferation. In summary, we describe a switch in expression from 11 beta-HSDl to 11 beta-HSD2 in neoplastic pituitary tissue. We propose that abnormal expression of 11 beta-HSD2 acts as a proproliferative prereceptor determinant of pituitary cell growth, and may provide a novel target for future tumor therapy.


Subject(s)
Adenoma/enzymology , Cell Division , Hydroxysteroid Dehydrogenases/genetics , Pituitary Neoplasms/enzymology , 11-beta-Hydroxysteroid Dehydrogenases , Adenoma/pathology , Base Sequence , DNA Primers , Humans , Pituitary Neoplasms/pathology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
5.
J Bone Miner Res ; 16(6): 1037-44, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11393780

ABSTRACT

Tissue damage by proinflammatory cytokines is attenuated at both systemic and cellular levels by counter anti-inflammatory factors such as corticosteroids. Target cell responses to corticosteroids are dependent on several factors including prereceptor regulation via local steroidogenic enzymes. In particular, two isozymes of 11beta-hydroxysteroid dehydrogenase (11beta-HSD), by interconverting hormonally active cortisol (F) to inactive cortisone (E), regulate the peripheral action of corticosteroids 11beta-HSD1 by converting E to F and 11beta-HSD2 by inactivating F to E. In different in vitro and in vivo systems both 11beta-HSD isozymes have been shown to be expressed in osteoblasts (OBs). Using the MG-63 human osteosarcoma cell-line and primary cultures of human OBs, we have studied the regulation of osteoblastic 11beta-HSD isozyme expression and activity by cytokines and hormones with established roles in bone physiology. In MG-63 cells, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) potently inhibited 11beta-HSD2 activity (cortisol-cortisone conversion) and messenger RNA (mRNA) levels in a dose-dependent manner while stimulating reciprocal expression of 11beta-HSD1 mRNA and activity (cortisone-cortisol conversion). A similar rise in 11beta-HSD1 reductase activity also was observed in primary cultures of OBs treated with 10 ng/ml TNF-alpha. Pretreatment of MG-63 cells with 0.1 ng/ml IL-1beta resulted in increased cellular sensitivity to physiological glucocorticoids as shown by induction of serum and glucocorticoid-inducible kinase (SGK; relative increase with 50 nM F but no IL-1beta pretreatment 1.12 +/- 0.34; with pretreatment 2.63 +/- 0.50; p < 0.01). These results highlight a novel mechanism within bone cells whereby inflammatory cytokines cause an autocrine switch in intracellular corticosteroid metabolism by disabling glucocorticoid inactivation (11beta-HSD2) while inducing glucocorticoid activation (11beta-HSD1). Therefore, it can be postulated that some of the effects of proinflammatory cytokines within bone (e.g., periarticular erosions in inflammatory arthritis) are mediated by this mechanism.


Subject(s)
Cytokines/metabolism , Glucocorticoids/metabolism , Hydroxysteroid Dehydrogenases/metabolism , Nuclear Proteins , Osteoblasts/metabolism , 11-beta-Hydroxysteroid Dehydrogenases , Cells, Cultured , Cytokines/pharmacology , Enzyme Activation/drug effects , Humans , Hydroxysteroid Dehydrogenases/drug effects , Hydroxysteroid Dehydrogenases/genetics , Immediate-Early Proteins , Inflammation/metabolism , Interleukin-1/metabolism , Interleukin-1/pharmacology , Isoenzymes/drug effects , Osteoblasts/drug effects , Osteosarcoma/enzymology , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
6.
J Cell Biochem ; 81(3): 453-62, 2001.
Article in English | MEDLINE | ID: mdl-11255228

ABSTRACT

11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) acts as a pre-receptor signaling mechanism for corticosteroids by regulating the access of active glucocorticoids to both glucocorticoid (GR) and mineralocorticoid receptors (MR). To examine the relationship between endogenous glucocorticoid metabolism and osteoblast function, we have characterized the expression of 11 beta-HSD isozymes in rat osteosarcoma cells. Analysis of mRNA from ROS 25/1, UMR 106 and ROS 17/2.8 cells revealed transcripts for both 11 beta-HSD type 1 (11 beta-HSD1) and type 2 (11 beta-HSD2) in all three cell lines. However, enzyme activity studies showed only high affinity dehydrogenase activity (inactivation of corticosterone (B) to 11-dehydrocorticosterone (A)), characteristic of 11 beta-HSD2; conversion of B to A was higher in ROS 25/1> UMR 106 cells>ROS 17/2.8. Although all three cell lines had similar numbers of GR (50,000/cell), glucocorticoid modulation of alkaline phosphatase activity and cell proliferation was only detectable in ROS 17/2.8 cells. Further studies showed that 11 beta-HSD2 activity in each of the cells was potently stimulated by both A and B, but not by synthetic dexamethasone. This effect was blocked by the 11 beta-HSD inhibitor, 18 beta-glycyrrhetinic acid (but not by GR or MR antagonists) suggesting direct, allosteric regulation of 11 beta-HSD2 activity. These data indicate that in osteosarcoma cells 11 beta-HSD2 plays a key role in controlling GR-mediated responses; cells with relatively high levels of 11 beta-HSD2 activity were insensitive to glucocorticoids, whilst cells with low levels showed functional responses to both dexamethasone and B. In addition to the established effects of 11 beta-HSD2 in protecting MR in the kidney and colon, our data suggest that 11 beta-HSD2 in bone represents an important pre-receptor mechanism in determining ligand availability to GR.


Subject(s)
Glucocorticoids/pharmacology , Hydroxysteroid Dehydrogenases/metabolism , Osteoblasts/enzymology , Receptors, Glucocorticoid/physiology , 11-beta-Hydroxysteroid Dehydrogenase Type 1 , Animals , Base Sequence , DNA Primers , Hydroxysteroid Dehydrogenases/genetics , Rats , Receptors, Glucocorticoid/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...