Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 131: 105202, 2022 07.
Article in English | MEDLINE | ID: mdl-35500494

ABSTRACT

The locking compression plate (LCP) and screw sets are widely used as internal fixator assemblies to treat long bone fractures. However, the surgeon's critical challenge is choosing the implant set (plate and screws) for each patient. The present study introduces a parametrized simulation-based optimization algorithm for determining an LC system with the best bone-implant stability. For this purpose, a three-dimensional fractured bone supported by an LC system was generated, and the discrete genetic optimization approach was utilized to design the optimum implant. Initially, an algorithm was developed to optimize the optimum layouts for different numbers of screws. For the middle third transverse fracture, six screws were selected as the optimal number of the screws. In a second stage, the model was run to determine the best LC plate dimensions for desired fractured bones. Finally, optimal plates were identified for simple middle third transverse, 60° middle third oblique, and distal third transverse femoral fractures. The results of these simulations and those for other fracture types can be exploited to achieve improved surgical outcomes by selecting proper implants and screws configurations.


Subject(s)
Femoral Fractures , Fracture Fixation, Internal , Biomechanical Phenomena , Bone Plates , Bone Screws , Femoral Fractures/surgery , Finite Element Analysis , Fracture Fixation, Internal/methods , Humans
2.
Materials (Basel) ; 12(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31689882

ABSTRACT

This study is to assess the effect of temperature and strain rate on the mechanical properties of amorphous polyethylene (PE) based on fully atomistic model. A stochastic constitutive model using data obtained from molecular dynamics (MD) simulations for the material is constructed. Subsequently, a global sensitivity analysis approach is then employed to predict the essential parameters of the mechanical model. The sensitivity indices show that the key parameter affecting Young's modulus and yield stress is the temperature followed by the strain rate.

3.
Nanotechnology ; 28(13): 135202, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28169224

ABSTRACT

Black phosphorene (BP) is not stable at ambient conditions, so atomic defects and oxidation effects are unavoidable in BP samples in the experiment. The effects of these defects on the performance of the BP nanoresonators are still unclear. Here, we perform classical molecular dynamics to investigate the effects of the vacancy and oxidation on single-layer BP nanoresonators at different temperatures. We find that the vacancy causes a strong reduction in the quality factor of the nanoresonators, while the oxidation has a weaker effect on the nanoresonators. More specifically, a 2% concentration of randomly distributed single vacancies is able to reduce the quality factor by about 80% and 40% at 4.2 K and 50 K, respectively. We also find that the quality factor of the nanoresonators is not sensitive to the distribution pattern of the vacancy defects.

4.
Comput Methods Appl Mech Eng ; 256: 169-188, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23750055

ABSTRACT

We propose in this paper a reduced order modelling technique based on domain partitioning for parametric problems of fracture. We show that coupling domain decomposition and projection-based model order reduction permits to focus the numerical effort where it is most needed: around the zones where damage propagates. No a priori knowledge of the damage pattern is required, the extraction of the corresponding spatial regions being based solely on algebra. The efficiency of the proposed approach is demonstrated numerically with an example relevant to engineering fracture.

5.
Int J Multiscale Comput Eng ; 11(3): 253-287, 2013.
Article in English | MEDLINE | ID: mdl-27069423

ABSTRACT

We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model.

SELECTION OF CITATIONS
SEARCH DETAIL
...