Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Open Forum Infect Dis ; 8(2): ofaa631, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34853795

ABSTRACT

BACKGROUND: Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive coronavirus disease 2019 (COVID-19) testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect severe acute resrpiratory syndrome coronavirus 2 (SARS-CoV-2) in 40 minutes from sample collection to result. METHODS: We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica particle-based concentration method. Amplification was performed with 2 SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. RESULTS: Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3 000 000 copies/mL), with sensitivities of 50% (95% CI, 28%-72%) and 59% (95% CI, 43%-73%) in samples collected in universal transport medium and saline, respectively, compared with quantitative polymerase chain reaction (qPCR). Adding an upfront RNase inactivation step markedly improved the limit of detection to at least 25 000 copies/mL, with 87.5% (95% CI, 72%-95%) sensitivity and 100% specificity (95% CI, 87%-100%). Using both inactivation and purification increased the assay sensitivity by 10-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. CONCLUSIONS: By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity, especially in resource-limited settings.

2.
Proc Natl Acad Sci U S A ; 117(39): 24450-24458, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32900935

ABSTRACT

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had an enormous impact on society worldwide, threatening the lives and livelihoods of many. The effects will continue to grow and worsen if economies begin to open without the proper precautions, including expanded diagnostic capabilities. To address this need for increased testing, we have developed a sensitive reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay compatible with current reagents, which utilizes a colorimetric readout in as little as 30 min. A rapid inactivation protocol capable of inactivating virions, as well as endogenous nucleases, was optimized to increase sensitivity and sample stability. This protocol, combined with the RT-LAMP assay, has a sensitivity of at least 50 viral RNA copies per microliter in a sample. To further increase the sensitivity, a purification protocol compatible with this inactivation method was developed. The inactivation and purification protocol, combined with the RT-LAMP assay, brings the sensitivity to at least 1 viral RNA copy per microliter in a sample. This simple inactivation and purification pipeline is inexpensive and compatible with other downstream RNA detection platforms and uses readily available reagents. It should increase the availability of SARS-CoV-2 testing as well as expand the settings in which this testing can be performed.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/economics , Colorimetry , Coronavirus Infections/economics , Coronavirus Infections/virology , Genome, Viral/genetics , Humans , Hydrogen-Ion Concentration , Molecular Diagnostic Techniques/economics , Nucleic Acid Amplification Techniques/economics , Pandemics , Pneumonia, Viral/virology , Polyproteins , RNA Stability , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2 , Sensitivity and Specificity , Time Factors , Viral Proteins/genetics , Virus Inactivation
3.
Gene Expr Patterns ; 17(1): 38-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25541457

ABSTRACT

The tweety family of genes encodes large-conductance chloride channels and has been implicated in a wide array of cellular processes including cell division, cell adhesion, regulation of calcium activity, and tumorigenesis, particularly in neuronal cells. However, their expression patterns during early development remain largely unknown. Here, we describe the spatial and temporal patterning of ttyh1, ttyh2, and ttyh3 in Xenopus laevis during early embryonic development. Ttyh1 and ttyh3 are initially expressed at the late neurula stage are and primarily localized to the developing nervous system; however ttyh1 and ttyh3 both show transient expression in the somites. By swimming tadpole stages, all three genes are expressed in the brain, spinal cord, eye, and cranial ganglia. While ttyh1 is restricted to proliferative, ventricular zones, ttyh3 is primarily localized to postmitotic regions of the developing nervous system. Ttyh2, however, is strongly expressed in cranial ganglia V, VII, IX and X. The differing temporal and spatial expression patterns of ttyh1, ttyh2, and ttyh3 suggest that they may play distinct roles throughout embryonic development.


Subject(s)
Chloride Channels/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Animals , Base Sequence , Brain/embryology , Brain/metabolism , Chloride Channels/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Somites/metabolism , Xenopus Proteins/genetics
4.
J Vis Exp ; (70)2012 Dec 23.
Article in English | MEDLINE | ID: mdl-23287809

ABSTRACT

The process by which the anterior region of the neural plate gives rise to the vertebrate retina continues to be a major focus of both clinical and basic research. In addition to the obvious medical relevance for understanding and treating retinal disease, the development of the vertebrate retina continues to serve as an important and elegant model system for understanding neuronal cell type determination and differentiation(1-16). The neural retina consists of six discrete cell types (ganglion, amacrine, horizontal, photoreceptors, bipolar cells, and Müller glial cells) arranged in stereotypical layers, a pattern that is largely conserved among all vertebrates (12,14-18). While studying the retina in the intact developing embryo is clearly required for understanding how this complex organ develops from a protrusion of the forebrain into a layered structure, there are many questions that benefit from employing approaches using primary cell culture of presumptive retinal cells (7,19-23). For example, analyzing cells from tissues removed and dissociated at different stages allows one to discern the state of specification of individual cells at different developmental stages, that is, the fate of the cells in the absence of interactions with neighboring tissues (8,19-22,24-33). Primary cell culture also allows the investigator to treat the culture with specific reagents and analyze the results on a single cell level (5,8,21,24,27-30,33-39). Xenopus laevis, a classic model system for the study of early neural development (19,27,29,31-32,40-42), serves as a particularly suitable system for retinal primary cell culture (10,38,43-45). Presumptive retinal tissue is accessible from the earliest stages of development, immediately following neural induction (25,38,43). In addition, given that each cell in the embryo contains a supply of yolk, retinal cells can be cultured in a very simple defined media consisting of a buffered salt solution, thus removing the confounding effects of incubation or other sera-based products (10,24,44-45). However, the isolation of the retinal tissue from surrounding tissues and the subsequent processing is challenging. Here, we present a method for the dissection and dissociation of retinal cells in Xenopus laevis that will be used to prepare primary cell cultures that will, in turn, be analyzed for calcium activity and gene expression at the resolution of single cells. While the topic presented in this paper is the analysis of spontaneous calcium transients, the technique is broadly applicable to a wide array of research questions and approaches (Figure 1).


Subject(s)
Cytological Techniques/methods , Dissection/methods , Retina/embryology , Retina/surgery , Xenopus laevis/embryology , Xenopus laevis/surgery , Animals , Retina/cytology
5.
Dev Dyn ; 240(4): 862-73, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21384470

ABSTRACT

Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the adult nervous system, acts via two classes of receptors, the ionotropic GABA(A) and metabotropic GABA(B) receptors. During the development of the nervous system, GABA acts in a depolarizing, excitatory manner and plays an important role in various neural developmental processes including cell proliferation, migration, synapse formation, and activity-dependent differentiation. Here we describe the spatial and temporal expression patterns of the GABA(A) and GABA(B) receptors during early development of Xenopus laevis. Using in situ hybridization and qRT-PCR, GABA(A) α2 was detected as a maternal mRNA. All other α-subunits were first detected by tailbud through hatching stages. Expression of the various subunits was seen in the brain, spinal cord, cranial ganglia, olfactory epithelium, pineal, and pituitary gland. Each receptor subunit showed a distinctive, unique expression pattern, suggesting these receptors have specific functions and are regulated in a precise spatial and temporal manner.


Subject(s)
Receptors, GABA-A/genetics , Receptors, GABA-B/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , Animals , Cleavage Stage, Ovum/metabolism , Cloning, Molecular , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Protein Subunits/analysis , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, GABA-A/analysis , Receptors, GABA-A/metabolism , Receptors, GABA-A/physiology , Receptors, GABA-B/analysis , Receptors, GABA-B/metabolism , Receptors, GABA-B/physiology , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...