Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 884: 163738, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37116805

ABSTRACT

Present knowledge about the fate of persistent and mobile (PM) substances in drinking water treatment is limited. Hence, this study assesses the potential of fixed-bed granular activated carbon (GAC) filters to fill the treatment gap for PM substances and the elimination predictability from lab-scale experiments. Two parallel pilot filters (GAC bed height 2 m, diameter 15 cm) with different GAC were operated for 1.5 years (ca. 47,000 BV throughput) alongside rapid small-scale column tests (RSSCT) designed based on the proportional diffusivity (PD) and the constant diffusivity (CD) approaches. Background dissolved organic matter (DOM) and a set of 17 target substances were investigated, among them 2-acrylamido-2-methylpropane sulfonate (AAMPS), adamantan-1-amine (ATA), melamine (MEL) and trifluoromethanesulfonic acid (TFMSA). Nine substances were predominantly present in the drinking water used as pilot filter influent (frequencies of detection above 80 %, median concentrations 0.003-1.868 µg/L) and their breakthrough behaviors could be observed: TFMSA was not retained at all, four substances including AAMPS and ATA reached complete breakthrough below 20,000 BV, three compounds were partially retained until the end of operation and oxypurinol was retained completely. The comparable PM candidate and DOM removal performances of both GAC aligns with their very similar surface characteristics and elemental compositions. The agreement of results between RSSCT with the pilot-scale filters were substance specific and no superior RSSCT design could be identified. However, CD-RSSCT provide a conservative removal prediction for most studied compounds. MEL adsorption was significantly underestimated by both RSSCT designs. Using the criterion of a carbon usage rate (with respect to 50 % breakthrough) below 25 mgGAC/Lwater for an economic retention by fixed-bed GAC filters, five (out of nine) substances met the requirement.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Charcoal , Water Purification/methods , Dissolved Organic Matter , Adsorption
2.
Water Res ; 235: 119861, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36958222

ABSTRACT

Persistent and mobile (PM) substances among the organic micropollutants have gained increasing interest since their inherent properties enable them to enrich in water cycles. This study set out to investigate the potential of adsorption onto activated carbon as a drinking water treatment option for 19 PM candidates in batch experiments in a drinking water matrix using a microporous and a mesoporous activated carbon. Overall, adsorption of PM candidates proved to be very variable and the extent of removal could not be directly related to molecular properties. At an activated carbon dose of 10 mg/L and 48 h contact time, five (out of 19) substances were readily removed (≥ 80%), among them N-(3-(dimethylamino)-propyl)methacrylamide, which was investigated for the first time. For five other substances, no or negligible removal (< 20%) was observed, including 2-methyl-2-propene-1-sulfonic acid and 4­hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine. For the former, current state of the art adsorption processes may pose a sufficient barrier. Additionally, substance specific surrogate correlations between removals and UVA254 abatements were established to provide a cheap and fast estimate for PM candidate elimination. Adsorption onto activated carbon could contribute significantly to PM substance elimination as part of multi barrier approaches, but assessments for individual substances still require clarification, as demonstrated for the investigated PM candidates.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Charcoal , Adsorption , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...