Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 17: 1094301, 2023.
Article in English | MEDLINE | ID: mdl-36968023

ABSTRACT

Introduction: Diabetes is a global disease, commonly complicated by neuropathy. The spinal cord reacts to diabetes by neuronal apoptosis, microglial activation, and astrocytosis, with a disturbance in neuronal and glial Nuclear factor erythroid 2-related factor/Heme oxygenase-1 (Nrf2/HO-1) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling. Curcumin, a bioactive natural substance, showed neuroprotective role in many diseases. However, its role in the treatment of the diabetic central neuropathy of spinal cord and the underlying mechanisms still need clarification. The present study tried to evaluate the role of curcumin in diabetes-induced central neuropathy of the spinal cord in rats. Methods: Twenty rats were divided into three groups; group 1: a negative control group; group 2: received streptozotocin (STZ) to induce type I diabetes, and group 3: received STZ + Curcumin (150 mg/kg/day) for eight weeks. The spinal cords were examined for histopathological changes, and immunohistochemical staining for Glia fibrillary acidic protein (GFAP); an astrocyte marker, Ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker, neuronal nuclear protein (NeuN); a neuronal marker, caspase-3; an apoptosis marker, Nrf2/HO-1, NF-kB, and oxidative stress markers were assessed. Results: Curcumin could improve spinal cord changes, suppress the expression of Iba1, GFAP, caspase-3, and NF-kB, and could increase the expression of NeuN and restore the Nrf2/HO-1 signaling. Discussion: Curcumin could suppress diabetic spinal cord central neuropathy, glial activation, and neuronal apoptosis with the regulation of Nrf2/HO-1 and NF-kB signaling.

2.
Biomed Pharmacother ; 157: 114038, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446241

ABSTRACT

Cardiorenal syndrome (CRS) is a complex heart and kidney pathophysiologic disorder that leads to a bidirectional interrelationship between them. Abscisic acid (ABA) is a phytohormone that is present in plants, and is known to regulate fundamental physiological functions. This study aimed to explore the efficacy of ABA in surgically induced-CRS type 3 rats. Rats were randomly and equally divided into four groups. Rats in Group 1 received saline (Sham group), Group 2 included control induced-CRS rats, Group 3 rats (CRS+ABA) included CRS rats treated with ABA and Group 4 (CRS + ABA + Verapamil + propofol) were CRS rats treated with Verapamil, propofol and ABA. The rats were treated with the drugs daily for four weeks. At the end of the study, relative heart weight corrected QT interval (QTc), mean blood pressure (MBP), kidney functions, oxidative stress, NADPH oxidase 4 (NOX4), protein 53 (P53), and heat shock proteins-70 (HSP-70) expression was assessed and recorded. ABA led to a significant shortening of the ventricular action potential duration indicated by QTc. Furthermore, it significantly lowered heart weight, MBP, serum creatinine, NOX-4, and P-53 expression and augmented HSP-70 expression. In contrast, adding calcium channel blockers (CCBs) to ABA mitigated this effect. The results suggested that ABA has a potential protective role in CRS-induced cardiac hypertrophy and arrhythmia that could be mediated through inhibition of P-53, NOX-4, and an increase in HSP-70 expression.


Subject(s)
Cardio-Renal Syndrome , Animals , Rats , Cardio-Renal Syndrome/drug therapy , Abscisic Acid/pharmacology , HSP70 Heat-Shock Proteins/metabolism , Rats, Sprague-Dawley , Oxidative Stress
3.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361584

ABSTRACT

Methotrexate (MTX) is a potent anti-cancer drug, commonly associated with nephrotoxicity via the induction of oxidative stress and apoptosis with alteration of renal water channel proteins, namely aquaporins (AQPs). Omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) have shown cytoprotective effects through their anti-oxidant and antiapoptotic activities. The present study aims for the first time to explore the role of LC-PUFA against MTX-induced nephrotoxicity. Rats were divided into the following groups: saline control, LC-PUFA control, MTX, MTX + LC-PUFA (150 mg/kg), or MTX + LC-PUFA (300 mg/kg). Then, H&E staining and immunohistochemical staining for the anti-apoptosis marker B-cell lymphoma 2 (BCL-2), the apoptosis marker BCL2-Associated X Protein (BAX), the proinflammatory marker Nuclear factor kappa B (NF-kB), AQPs 1 and 2 were performed in kidney sections with an assessment of renal oxidative stress. The MTX caused a renal histopathological alteration, upregulated renal BAX and NF-kB, downregulated Bcl-2 and AQP1, altered the distribution of AQP2, and caused oxidative stress. The LC-PUFA attenuated the pathological changes and decreased renal BAX and NF-kB, increased BCL-2 and AQP1, restored the normal distribution of AQP2, and decreased the oxidative stress. Therefore, LC-PUFA is a good adjuvant to MTX to prevent its adverse effects on kidneys through its antiapoptotic, antioxidant, and anti-inflammatory effect and its role in the restoration of the expression of AQPs 1 and 2.


Subject(s)
Fatty Acids, Omega-3 , Methotrexate , Rats , Animals , Methotrexate/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , NF-kappa B/metabolism , Aquaporin 2/metabolism , Oxidative Stress , Kidney/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/metabolism , Dietary Supplements
4.
Cells ; 11(16)2022 08 11.
Article in English | MEDLINE | ID: mdl-36010575

ABSTRACT

Long-term use of Glucocorticoids produces skeletal muscle atrophy and microvascular rarefaction. Hydrogen sulfide (H2S) has a potential role in skeletal muscle regeneration. However, the mechanisms still need to be elucidated. This is the first study to explore the effect of Sodium hydrosulfide (NaHS) H2S donor, against Dexamethasone (Dex)-induced soleus muscle atrophy and microvascular rarefaction and on muscle endothelial progenitors and M2 macrophages. Rats received either; saline, Dex (0.6 mg/Kg/day), Dex + NaHS (5 mg/Kg/day), or Dex + Aminooxyacetic acid (AOAA), a blocker of H2S (10 mg/Kg/day) for two weeks. The soleus muscle was examined for contractile properties. mRNA expression for Myostatin, Mechano-growth factor (MGF) and NADPH oxidase (NOX4), HE staining, and immunohistochemical staining for caspase-3, CD34 (Endothelial progenitor marker), vascular endothelial growth factor (VEGF), CD31 (endothelial marker), and CD163 (M2 macrophage marker) was performed. NaHS could improve the contractile properties and decrease oxidative stress, muscle atrophy, and the expression of NOX4, caspase-3, Myostatin, VEGF, and CD31 and could increase the capillary density and expression of MGF with a significant increase in expression of CD34 and CD163 as compared to Dex group. However, AOAA worsened the studied parameters. Therefore, H2S can be a promising target to attenuate muscle atrophy and microvascular rarefaction.


Subject(s)
Hydrogen Sulfide , Microvascular Rarefaction , Animals , Caspase 3 , Dexamethasone/adverse effects , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Macrophages/metabolism , Muscular Atrophy , Myostatin , NADPH Oxidase 4 , NADPH Oxidases , Rats , Vascular Endothelial Growth Factor A
5.
Cells ; 11(4)2022 02 21.
Article in English | MEDLINE | ID: mdl-35203394

ABSTRACT

Obesity causes renal changes (ORC), characterized by defective renal autophagy, lipogenesis, enhanced macrophage infiltration and apoptosis. We hypothesize that Dasatinib, a tyrosine kinase inhibitor, may ameliorate changes associated with obesity. We the mice with either Obesogenic diet (OD) or a standard basal diet. After 12 weeks, the mice received either vehicle or Dasatinib 4 mg/kg/d for an additional four weeks. We examined serum creatinine, urea, lipid profile and renal cortical mRNA expression for lipogenesis marker SREBP1, inflammatory macrophage marker iNOS and fibrosis markers; TGFß and PDGFA genes; immunohistochemical (IHC) staining for CD68; inflammatory macrophage marker and ASMA; fibrosis marker, LC3 and SQSTM1/P62; autophagy markers and western blotting (WB) for caspase-3; and, as an apoptosis marker, LC3II/I and SQSTM1/P62 in addition to staining for H&E, PAS, Sirius red and histopathological scoring. Dasatinib attenuated renal cortical mRNA expression for SREBP1, iNOS, PDGFA and TGFß and IHC staining for CD68, ASMA and SQSTM1/P62 and WB for caspase-3 and SQSTM1/P62, while elevating LC3 expression. Moreover, Dasatinib ameliorated ORC; glomerulosclerosis, glomerular expansion, tubular dilatation, vacuolation and casts; inflammatory cellular infiltration; and fibrosis. Dasatinib is a promising therapy for ORC by correcting autophagy impairment, attenuating lipogenesis, apoptosis and macrophage infiltration by inducing antifibrotic activity.


Subject(s)
Apoptosis , Autophagy , Animals , Caspase 3/metabolism , Dasatinib/pharmacology , Dasatinib/therapeutic use , Fibrosis , Kidney/metabolism , Macrophages/metabolism , Mice , Mice, Obese , Obesity/drug therapy , RNA, Messenger , Sequestosome-1 Protein/metabolism , Transforming Growth Factor beta/metabolism
6.
Heliyon ; 7(10): e08171, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34746462

ABSTRACT

AIMS: This study aimed to explore the potential protective effect of α-lipoic acid on busulfan-induced pulmonary fibrosis in rats. MAIN METHODS: Eighteen adult male rats were divided into 3 groups; control, busulfan, and busulfan plus α-lipoic acid groups. Lung index ratio, serum level of proinflammatory cytokine were assessed. The activities of antioxidant enzymes and lipid peroxidation products were estimated in the lung tissues in addition to the histopathological analyses. The deposition of the collagen in the lung tissues was evaluated by Sirius red staining. The expressions of α-smooth muscle actin (α-SMA), TNF-α, and Caspase 3 were determined immunohistochemically. The pulmonary expression of COX-2 and NOX-4 mRNA was assessed using qRT-PCR. KEY FINDINGS: Administration of ALA significantly protect the lung against BUS-induced pulmonary fibrosis, besides the upregulation of antioxidants, and downregulation of pro-inflammatory cytokines. Also, it reduced collagen deposition that associated with a decreased expression of α-SMA, TNF-α, and Caspase 3 in the lung tissues. Moreover, ALA significantly upregulated the expression of COX-2 concomitant with the downregulation of elevated NOX-4. SIGNIFICANCE: ALA attenuates the lung cytotoxicity of busulfan through its anti-inflammatory, anti-apoptotic, and antifibrotic effects that may be mediated by upregulation of COX-2 and downregulation of NOX-4.

7.
Tissue Cell ; 72: 101533, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33838352

ABSTRACT

Methotrexate (MTX) is a chemotherapeutic agent used for cancer and autoimmune disorders. MTX may cause multi-organ affections. However, few studies examined MTX-induced splenic suppression and therapeutic modalities against it. This is the first study to explore the efficacy of omega-3 fatty acids; Eicosapentaenoic (EPA) and Docosahexaenoic (DHA) against MTX-induced splenic suppression and its effect on splenic macrophages and lymphocytes. Five groups of Sprague Dawley rats were used. Group 1 received saline; group 2: omega-3 only; group 3: a single dose of MTX (20 mg/kg); groups 4 and 5: MTX (20 mg/kg) + either omega-3 (150) or (300 mg/kg) once daily, respectively, given for two days before MTX and three days after it. Splenic tissues were then removed, evaluated for oxidative stress markers; GSH, MDA, and for mRNA expression of the apoptotic marker caspase-3, the anti-apoptotic marker Bcl-2 and the inflammatory cytokine TNFα. Moreover, H&E stain, Prussian blue stain for iron, and immunohistochemical staining for TNFα, T lymphocyte marker; CD3, B lymphocyte marker; CD20, and macrophage marker; CD68, were performed with morphometric analysis. EPA and DHA could decrease the MTX-induced increase in the histopathological injury score, splenic hemosiderin, splenic MDA, mRNA expression of TNFα, caspase-3 and could increase the MTX-induced decrease in Splenic GSH and mRNA expression for Bcl-2. It also decreased the MTX-induced elevation in the immunopositive area of TNFα, and increased the area percentage of CD3+, CD20+ and CD68+ cells. Therefore, omega-3 can be a promising adjuvant to help MTX action with prevention of its deleterious effects on spleen.


Subject(s)
Antigens, CD/metabolism , Apoptosis , B-Lymphocytes/metabolism , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Macrophages/metabolism , Methotrexate/adverse effects , T-Lymphocytes/metabolism , Animals , Apoptosis/drug effects , B-Lymphocytes/drug effects , Caspase 3/metabolism , Glutathione/metabolism , Macrophages/drug effects , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Spleen/drug effects , Spleen/immunology , Spleen/pathology , T-Lymphocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism
8.
Article in English | MEDLINE | ID: mdl-31730522

ABSTRACT

Background Since their discovery in the early 1960s, doxorubicin (DOX) remains the most effective anticancer drug. However, this drug has confirmed to be a double-edged sword because it causes a cardiomyopathy that leads to congestive heart failure. Ghrelin, a multi-functional peptide, plays an important role in cardiovascular protection. Therefore, we investigated the effects of ghrelin on vascular endothelial growth factor-beta (VEGF-B) and connexin-43 (Cx43) expression in DOX-induced cardiomyopathy. Methods Forty adult male rats were divided randomly into four groups: normal, normal + ghrelin, DOX-induced cardiomyopathy, and DOX-induced cardiomyopathy + ghrelin. Biochemical and histopathological analysis, electrocardiograph (ECG), heart rate, systolic blood pressure (SBP), and immunohistochemical staining of VEGF-B and Cx43 were assessed for all rats in heart tissue specimens. The duration of the study was 2 weeks. Results DOX-induced cardiomyopathy in rats showed significant ECG changes such as prolongation of PR, QT, QTC intervals and ST segment, a decrease in amplitude and an increase in the duration of QRS complex, bradycardia, and a decrease in SBP. Also, rats in the DOX group showed myocardial histopathological damage in the form of severe fibrosis with decreased expression of Cx43 and a non-significant difference in expression of VEGF-B when compared to normal rats. Treatment with ghrelin resulted in a significant improvement in all the studied parameters and was associated with an increase in VEGF-B and Cx43 expression. Conclusions Ghrelin has a beneficial effect against DOX-induced cardiomyopathy which may be mediated through VEGF-B and Cx43 expression in the myocardium. Ghrelin is a promising cardioprotective drug in DOX-induced cardiomyopathy patients, but further studies are needed to evaluate its use.


Subject(s)
Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Connexin 43/metabolism , Doxorubicin/adverse effects , Ghrelin/pharmacology , Heart/drug effects , Vascular Endothelial Growth Factor B/metabolism , Animals , Cardiomyopathies/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Disease Models, Animal , Fibrosis/chemically induced , Fibrosis/drug therapy , Fibrosis/metabolism , Male , Myocardium/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...