Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Life Sci ; 306: 120851, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926590

ABSTRACT

AIMS: The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS: Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS: II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1ß and IL-6 in lung explants following II/R. SIGNIFICANCE: The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.


Subject(s)
Intestinal Diseases , Mesenteric Ischemia , Reperfusion Injury , Animals , Intestinal Diseases/drug therapy , Intestinal Diseases/prevention & control , Ischemia , Male , Nitric Oxide Synthase Type II/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Simvastatin/pharmacology
2.
J Anim Sci ; 99(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33914885

ABSTRACT

Our aim with this study was to evaluate the consumption, performance, quantitative characteristics of carcasses, biochemical profile, plasma levels of ghrelin and leptin, expression of the receptor for ghrelin (GHS-R1a) in the hypothalamus and duodenum, and the number of goblet cells in the duodenum of calves subjected to milk volume restriction and supplemented with 2-hydroxy-4-(methylthio)butanoic acid (HMTBa). We used 21 Holstein mixed-breed calves, aged between 3 and 15 d with an average weight of 36.8 kg, and housed in pens with troughs for hay, concentrate, and water. The study included two consecutive experimental periods (first period [P1] and second period [P2]) of 21 d each, with 7 d of adaptation to the diet and facilities. The calves were distributed in a completely randomized design in three treatments with seven repetitions. 1) Control: 6 liters of milk/d during P1 and 6 liters of milk/day during P2; 2) RES (milk restriction): 3 liters of milk/day during P1 and 6 liters of milk/day during P2; and 3) RES + HMTBa: 3 liters of milk/day during P1 and 6 liters of milk/day during P2 + 3.3 g of HMTBa/day in both periods. HMTBa was supplied in milk, and the amount of concentrated ration and hay provided and leftovers were recorded daily to estimate dry matter (DM) and crude protein consumption. Mean daily weight gain (DWG), final weight (FW), and feed conversion (FC) were obtained at the beginning and at the end of each 21-d period. Plasma concentrations of ghrelin and leptin, triglycerides, total protein, urea, lactate, creatinine, alkaline phosphatase, and cholesterol were measured for P1 and P2 at the end of each 21-d period. At the end of P2, animals were slaughtered; sections of the duodenum were collected to evaluate the expression of GHS-R1a and quantity of goblet cells; hypothalamus was used to evaluate the expression of GHS-R1a; rumen was used to evaluate the thickness of epithelium and keratin and the density, height, and width of ruminal papillae. In P1, total DM consumption, FW, DWG, glucose, and triglycerides were lower in the RES and RES + HMTBa groups (P < 0.001). In P2, there was an improvement in the FC of the RES + HMTBa group (compared with Control and RES groups) and a lower urea concentration in the RES group (compared with Control and RES + HMTBa groups) (P < 0.001). No differences were observed among groups regarding hormonal concentrations, histological parameters, and GHS-R1a expression in the duodenum and hypothalamus. Therefore, milk restriction combined with HMTBa supplementation promoted greater compensatory gain by a mechanism independent of changes in GHS-R1a expression and hormone levels of ghrelin and leptin.


Subject(s)
Animal Feed , Milk , Animal Feed/analysis , Animals , Butyric Acid , Cattle , Diet/veterinary , Dietary Supplements , Fermentation , Rumen/metabolism , Weaning
3.
Oxid Med Cell Longev ; 2020: 3025361, 2020.
Article in English | MEDLINE | ID: mdl-32351670

ABSTRACT

BACKGROUND: Obesity is a growing epidemic with limited effective treatments and an important risk factor for several diseases such as metabolic syndrome (MetS). In this study, we aimed to investigate the effect of 3-amino-1,2,4-triazole (ATZ), an inhibitor of catalase and heme synthesis, in a murine model for MetS. METHODS: Male C57BL/6 mice with high-fat diet-induced MetS received ATZ (500 mg·kg-1·24 h-1) for 12 weeks. RESULTS: The HFD group showed increased blood pressure and body weight, enhanced fat deposition accompanied by an increase in adipocyte diameter, and decreased lipolysis in white adipose tissue (WAT). The expression of genes related to inflammation was increased in WAT of the HFD group. Concurrently, these mice exhibited an increase in leptin, nonesterified fatty acid (NEFA), insulin, and glucose in plasma, coupled with glucose intolerance and insulin resistance. Strikingly, ATZ prevented the increase in blood pressure and the HFD-induced obesity as observed by lower body weight, WAT index, triglycerides, NEFA, and leptin in plasma. ATZ treatment also prevented the HFD-induced increase in adipocyte diameter and even induced marked atrophy and the accumulation of macrophages in this tissue. ATZ treatment also improved glucose metabolism by increasing glucose tolerance and insulin sensitivity, GLUT4 mRNA expression in WAT in parallel to decreased insulin levels. CONCLUSIONS: In the context of HFD-induced obesity and metabolic syndrome, the fat loss induced by ATZ is probably due to heme synthesis inhibition, which blocks adipogenesis by probably decreased RevErbα activity, leading to apoptosis of adipocytes and the recruitment of macrophages. As a consequence of fat loss, ATZ elicits a beneficial systemic antiobesity effect and improves the metabolic status.


Subject(s)
Body Weight , Metabolic Syndrome , Triazoles , Animals , Male , Mice , Body Weight/drug effects , Disease Models, Animal , Metabolic Syndrome/drug therapy , Triazoles/pharmacology , Triazoles/therapeutic use
4.
Hypertension ; 71(6): 1210-1217, 2018 06.
Article in English | MEDLINE | ID: mdl-29712741

ABSTRACT

Hydrogen sulfide (H2S) and NO are important gasotransmitters, but how endogenous H2S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H2S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H2S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H2S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H2S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H2S to contribute to systemic blood pressure function.


Subject(s)
Blood Pressure/physiology , Cystathionine gamma-Lyase/pharmacology , Hydrogen Sulfide/metabolism , Hypertension/metabolism , Nitric Oxide/metabolism , Vasodilation/drug effects , Animals , Biological Availability , Blood Pressure/drug effects , Disease Models, Animal , Hypertension/physiopathology , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiopathology , Mice
5.
Oxid Med Cell Longev ; 2017: 8523728, 2017.
Article in English | MEDLINE | ID: mdl-28400914

ABSTRACT

Background. Type 2 diabetes mellitus (T2DM) is a serious disease associated with high morbidity and mortality. Scientific findings showed that physical exercise is an option for treatment of these patients. This study's objective is to investigate the effects of supervised aerobic and/or resistance physical training on inflammatory markers in subjects with T2DM. Methods. A systematic review was conducted on four databases, MEDLINE, CENTRAL, LILACS, and Scopus, and manual search from 21 to 30 November 2016. Randomized clinical trials involving individuals diagnosed with T2DM, who have undergone supervised training protocols, were selected in this study. Results. Eleven studies were included. Studies that evaluated control group versus aerobic exercise reported controversial results about the effectiveness of physical training in modifying C-reactive protein (CRP) and cytokine levels. The only variable analyzed by the six studies in comparison to the control group versus resistance exercise was CRP. This protein showed no significant difference between groups. Between the two modes of exercise (aerobic and resistance), only one study demonstrated that aerobic exercise was more effective in reducing CRP. Conclusion. The evidence was insufficient to prove that aerobic or resistance exercise improves systemic levels of inflammatory markers in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Exercise , Biomarkers/analysis , C-Reactive Protein/analysis , Databases, Factual , Diabetes Mellitus, Type 2/metabolism , Humans , Randomized Controlled Trials as Topic
6.
PLoS One ; 11(4): e0150255, 2016.
Article in English | MEDLINE | ID: mdl-27070147

ABSTRACT

Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2) plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y) animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.


Subject(s)
Aorta/metabolism , Nitric Oxide/metabolism , Oxidative Stress/genetics , Peptidyl-Dipeptidase A/genetics , Angiotensin-Converting Enzyme 2 , Animals , Antioxidants/metabolism , Endothelium, Vascular/metabolism , Female , Gene Deletion , Lipid Peroxidation/genetics , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/genetics , Oxidation-Reduction , RNA, Messenger/genetics , Renin-Angiotensin System/genetics , Superoxide Dismutase/genetics , Vasodilation/genetics
7.
Oxid Med Cell Longev ; 2016: 6487509, 2016.
Article in English | MEDLINE | ID: mdl-28101297

ABSTRACT

Background and Aims. Angiotensin converting enzyme 2 (ACE2) is an important component of the renin-angiotensin system. Since angiotensin peptides have been shown to be involved in hepatic steatosis, we aimed to evaluate the hepatic lipid profile in ACE2-deficient (ACE2-/y) mice. Methods. Male C57BL/6 and ACE2-/y mice were analyzed at the age of 3 and 6 months for alterations in the lipid profiles of plasma, faeces, and liver and for hepatic steatosis. Results. ACE2-/y mice showed lower body weight and white adipose tissue at all ages investigated. Moreover, these mice had lower levels of cholesterol, triglycerides, and nonesterified fatty acids in plasma. Strikingly, ACE2-/y mice showed high deposition of lipids in the liver. Expression of CD36, a protein involved in the uptake of triglycerides in liver, was increased in ACE2-/y mice. Concurrently, these mice exhibited an increase in hepatic oxidative stress, evidenced by increased lipid peroxidation and expression of uncoupling protein 2, and downregulation of sirtuin 1. ACE2-/y mice also showed impairments in glucose metabolism and insulin signaling in the liver. Conclusions. Deletion of ACE2 causes CD36/sirtuin 1 axis impairment and thereby interferes with lipid homeostasis, leading to lipodystrophy and steatosis.


Subject(s)
CD36 Antigens/metabolism , Peptidyl-Dipeptidase A/genetics , Sirtuin 1/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Body Weight , CD36 Antigens/genetics , Catalase/metabolism , Cholesterol/blood , Down-Regulation , Fatty Acids, Nonesterified/blood , Fatty Liver/etiology , Fatty Liver/metabolism , Gluconeogenesis , Insulin/metabolism , Lipid Peroxidation , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptidyl-Dipeptidase A/deficiency , RNA, Messenger/metabolism , Signal Transduction , Superoxide Dismutase/metabolism , Triglycerides/blood
8.
Oxid Med Cell Longev ; 2015: 924860, 2015.
Article in English | MEDLINE | ID: mdl-26064427

ABSTRACT

Arginase is a metalloenzyme which hydrolyzes L-arginine to L-ornithine and urea. Since its discovery, in the early 1900s, this enzyme has gained increasing attention, as literature reports have progressively pointed to its critical participation in regulating nitric oxide bioavailability. Indeed, accumulating evidence in the following years would picture arginase as a key player in vascular health. Recent studies have highlighted the arginase regulatory role in the progression of atherosclerosis, the latter an essentially prooxidant state. Apart from the fact that arginase has been proven to impair different metabolic pathways, and also as a consequence of this, the repercussions of the actions of such enzyme go further than first thought. In fact, such metalloenzyme exhibits direct implications in multiple cardiometabolic diseases, among which are hypertension, type 2 diabetes, and hypercholesterolemia. Considering the epidemiological repercussions of these clinical conditions, arginase is currently seen under the spotlights of the search for developing specific inhibitors, in order to mitigate its deleterious effects. That said, the present review focuses on the role of arginase in endothelial function and its participation in the establishment of atherosclerotic lesions, discussing the main regulatory mechanisms of the enzyme, also highlighting the potential development of pharmacological strategies in related cardiovascular diseases.


Subject(s)
Arginase/metabolism , Atherosclerosis/pathology , Endothelium, Vascular/physiopathology , Animals , Arginase/genetics , Arginase/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Humans , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction
9.
J Rehabil Med ; 45(6): 572-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23708239

ABSTRACT

OBJECTIVE: To evaluate the impact of a short-term cardiovascular physical programme on the metabolic, anthropometric and oxidative stress parameters of women with metabolic syndrome. METHODS: Thirty sedentary female patients, age range 30-60 years, were invited to participate in a 6-week cardiovascular physical programme. The training consisted of 60-min sessions of aerobic and strength exercises performed 3 times a week; a total of 18 sessions. Anthropometric data, functional exercise capacity, general biochemical profile, serum lipid peroxidation, superoxide dismutase and catalase activity in erythrocytes were evaluated according to standardized protocols. Peripheral vascular function was assessed using applanation tonometry. All assessments were performed before and after the training programme. RESULTS: The physical programme proved effective in improving the distance covered in the 6-min walk test and in reducing arterial pressure levels, pulse pressure and the Augmentation Index, without modifying heart rate. The plasma thiobarbituric acid reactive substances levels, indicators of oxidative stress, were significantly decreased after the programme. Superoxide dismutase activity was increased in erythrocyte lysates, with no significant change in catalase activity. Waist circumference was significantly decreased compared with baseline. The distance covered in the 6-min walk test was significantly greater after the short-term cardiovascular training. CONCLUSION: These findings indicate that short-term combined aerobic and strength training may represent an important non-pharmacological approach for treating individuals with metabolic syndrome.


Subject(s)
Exercise Therapy/methods , Metabolic Syndrome/physiopathology , Metabolic Syndrome/rehabilitation , Oxidative Stress , Thiobarbituric Acid Reactive Substances/metabolism , Vascular Stiffness , Adult , Anthropometry , Biomarkers/metabolism , Blood Pressure , Exercise , Female , Hemodynamics , Humans , Lipid Peroxidation , Manometry , Middle Aged , Resistance Training , Superoxide Dismutase/metabolism , Waist Circumference , Walking
10.
Int J Mol Sci ; 14(2): 3265-84, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23385234

ABSTRACT

The high prevalence of diabetes mellitus and its increasing incidence worldwide, coupled with several complications observed in its carriers, have become a public health issue of great relevance. Chronic hyperglycemia is the main feature of such a disease, being considered the responsible for the establishment of micro and macrovascular complications observed in diabetes. Several efforts have been directed in order to better comprehend the pathophysiological mechanisms involved in the course of this endocrine disease. Recently, numerous authors have suggested that excess generation of highly reactive oxygen and nitrogen species is a key component in the development of complications invoked by hyperglycemia. Overproduction and/or insufficient removal of these reactive species result in vascular dysfunction, damage to cellular proteins, membrane lipids and nucleic acids, leading different research groups to search for biomarkers which would be capable of a proper and accurate measurement of the oxidative stress (OS) in diabetic patients, especially in the presence of chronic complications. In the face of this scenario, the present review briefly addresses the role of hyperglycemia in OS, considering basic mechanisms and their effects in diabetes mellitus, describes some of the more commonly used biomarkers of oxidative/nitrosative damage and includes selected examples of studies which evaluated OS biomarkers in patients with diabetes, pointing to the relevance of such biological components in general oxidative stress status of diabetes mellitus carriers.

11.
Oxid Med Cell Longev ; 2012: 819310, 2012.
Article in English | MEDLINE | ID: mdl-23259029

ABSTRACT

This study evaluated the oxidative stress through enzymatic and nonenzymatic biomarkers in diabetic patients with and without hypertension and prediabetics. The SOD and CAT (in erythrocytes) and GPx (in plasma) enzymatic activities, plasma levels of lipid peroxidation, and total thiols were measured in the blood of 55 subjects with type 2 diabetes and 38 subjects without diabetes (9 pre-diabetics and 29 controls) aged 40-86 years. The total SOD activity and the lipid peroxidation were higher in diabetics compared to nondiabetics. In stratified groups, the total SOD activity was different for the hypertensive diabetics compared to the prediabetics and normotensive controls. Lipid peroxidation was significantly higher in both groups of diabetics (hypertensive and normotensive) compared to prediabetic groups and hypertensive and normotensive controls. There was no significant difference in the CAT and GPx activities, as well as in the concentration of total thiols in the groups studied. Present data strongly suggest the involvement of oxidative stress in the pathophysiology of diabetes, revealing that the increased lipid peroxidation has a close relationship with high glucose levels, as observed by the fasting glucose and HbA1c levels. The results evidence the correlation between lipid peroxidation and DM, irrespective of the presence of hypertension.


Subject(s)
Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/enzymology , Lipid Peroxidation , Oxidative Stress , Superoxide Dismutase/blood , Adult , Aged , Aged, 80 and over , Antioxidants/metabolism , Blood Glucose/metabolism , Catalase/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Fasting/blood , Female , Glutathione Peroxidase/blood , Glycated Hemoglobin/metabolism , Humans , Hypertension/blood , Hypertension/complications , Linear Models , Male , Middle Aged , Thiobarbituric Acid Reactive Substances/metabolism
12.
Hypertens Res ; 34(2): 154-60, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21124322

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) is a pivotal regulator of physiological homeostasis and diseases of the cardiovascular system. Recently, new factors have been discovered, such as angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) and Mas. This newly defined ACE2-angiotensin-(1-7)-Mas axis was shown to have a critical role in the vasculature and in the heart, exerting mainly protective effects. One important mechanism of the classic and the new RAAS regulate vascular function is through the regulation of redox signaling. Angiotensin II is a classic prooxidant peptide that increases superoxide production through the activation of NAD(P)H oxidases. This review summarizes the current knowledge about the ACE2-angiotensin-(1-7)-Mas axis and redox signaling in the context of cardiovascular regulation and disease. By interacting with its receptor Mas, angiotensin-(1-7) induces the release of nitric oxide from endothelial cells and thereby counteracts the effects of angiotensin II. ACE2 converts angiotensin II to angiotensin-(1-7) and, thus, is a pivotal regulator of the local effects of the RAAS on the vessel wall. Taken together, the ACE2-angiotensin-(1-7)-Mas axis emerges as a novel therapeutic target in the context of cardiovascular and metabolic diseases.


Subject(s)
Angiotensin I/physiology , Cardiovascular Diseases/physiopathology , Oxidative Stress , Peptide Fragments/physiology , Peptidyl-Dipeptidase A/physiology , Proto-Oncogene Proteins/physiology , Receptors, G-Protein-Coupled/physiology , Angiotensin I/biosynthesis , Angiotensin-Converting Enzyme 2 , Cardiovascular Diseases/etiology , Hemodynamics/physiology , Humans , NADPH Oxidases/metabolism , NADPH Oxidases/physiology , Nitric Oxide/metabolism , Peptide Fragments/biosynthesis , Proto-Oncogene Mas , Renin-Angiotensin System/physiology , Signal Transduction/physiology , Superoxides/metabolism
13.
Arq Bras Cardiol ; 94(5): 643-51, 684-93, 2010 May.
Article in English, Portuguese | MEDLINE | ID: mdl-20549031

ABSTRACT

Several studies refer to reactive oxygen and nitrogen species (RONS) as important agents in the pathogenesis of a number of heart diseases, including high blood pressure, arteriosclerosis and heart failure. Such species are highly bioactive molecules and a short life due chiefly to reduction of molecular oxygen. The enzyme complex of NADPH oxidase is the main source of these reactive species in vascular system. Under physiological conditions, formation and elimination of these substances seem balanced in vascular wall. During redox Unbalance, nonetheless, there is increase in NADPH oxidase activity and predominance of pro-oxidizing agents, surpassing the anti-oxidant capacity of the organism self-defense. Besides this, such enzyme hyperactivity reduces the bioavailability of nitric oxide, capital for vasodilation and maintenance of normal vascular function. In spite of NADPH oxidase being directly connected to the endothelial dysfunction, it was firstly described as for its expression in phagocytes, where its activity determines efficiency of organism defense mechanisms against pathogens. Slight differences between structural units of NADPH oxidases, depending on the type of cell which expresses it, may create therapeutic implications, allowing to selectively inhibiting redox unbalance triggered by NADPH oxidase, without compromising, however, its participation in physiological cellular signaling which make sure protection against micro-organisms.


Subject(s)
Hypertension/therapy , NADPH Oxidases/antagonists & inhibitors , Blood Pressure/physiology , Humans , Hypertension/enzymology , NADPH Oxidases/genetics , Oxidation-Reduction
14.
Arq. bras. cardiol ; 94(5): 684-693, maio 2010. ilus
Article in English, Portuguese | LILACS | ID: lil-548097

ABSTRACT

Vários estudos destacam as espécies reativas de oxigênio e nitrogênio (ERONs) como importantes contribuintes na patogênese de numerosas doenças cardiovasculares, incluindo hipertensão, aterosclerose e falência cardíaca. Tais espécies são moléculas altamente bioativas e com vida curta derivadas, principalmente, da redução do oxigênio molecular. O complexo enzimático da NADPH oxidase é a maior fonte dessas espécies reativas na vasculatura. Sob condições fisiológicas, a formação e eliminação destas substâncias aparecem balanceadas na parede vascular. Durante o desbalanço redox, entretanto, há um aumento na atividade da NADPH oxidase e predomínio de agentes pró-oxidantes, superando a capacidade de defesa orgânica antioxidante. Além disso, tal hiperatividade enzimática reduz a biodisponibilidade do óxido nítrico, crucial para a vasodilatação e a manutenção da função vascular normal. Apesar de a NADPH oxidase relacionar-se diretamente à disfunção endotelial, foi primeiramente descrita por sua expressão em fagócitos, onde sua atividade determina a eficácia dos mecanismos de defesa orgânica contra patógenos. As sutis diferenças existentes entre as unidades estruturais das NADPH oxidases, a depender do tipo celular que as expressa, podem ter implicações terapêuticas, permitindo a inibição seletiva do desequilíbrio redox induzido pela NADPH oxidase, sem comprometer, entretanto, sua participação nas vias fisiológicas de sinalização celular que garantem a proteção contra microorganismos.


Several studies refer to reactive oxygen and nitrogen species (RONS) as important agents in the pathogenesis of a number of heart diseases, including high blood pressure, arteriosclerosis and heart failure. Such species are highly bioactive molecules and a short life due chiefly to reduction of molecular oxygen. The enzyme complex of NADPH oxidase is the main source of these reactive species in vascular system. Under physiological conditions, formation and elimination of these substances seem balanced in vascular wall. During redox Unbalance, nonetheless, there is increase in NADPH oxidase activity and predominance of pro-oxidizing agents, surpassing the anti-oxidant capacity of the organism self-defense. Besides this, such enzyme hyperactivity reduces the bioavailability of nitric oxide, capital for vasodilation and maintenance of normal vascular function. In spite of NADPH oxidase being directly connected to the endothelial dysfunction, it was firstly described as for its expression in phagocytes, where its activity determines efficiency of organism defense mechanisms against pathogens. Slight differences between structural units of NADPH oxidases, depending on the type of cell which expresses it, may create therapeutic implications, allowing to selectively inhibiting redox unbalance triggered by NADPH oxidase, without compromising, however, its participation in physiological cellular signaling which make sure protection against micro-organisms.


Subject(s)
Humans , Hypertension/therapy , NADPH Oxidases/antagonists & inhibitors , Blood Pressure/physiology , Hypertension/enzymology , NADPH Oxidases/genetics , Oxidation-Reduction
15.
Hypertension ; 51(2): 574-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18180400

ABSTRACT

Mas codes for a G protein-coupled receptor that is implicated in angiotensin-(1-7) signaling. We studied the cardiovascular phenotype of Mas-deficient mice backcrossed onto the FVB/N genetic background using telemetry and found that they exhibit higher blood pressures compared with controls. These Mas(-/-) mice also had impaired endothelial function, decreased NO production, and lower endothelial NO synthase expression. Reduced nicotinamide-adenine dinucleotide phosphate oxidase catalytic subunit gp91(phox) protein content determined by Western blotting was higher in Mas(-/-) mice than in controls, whereas superoxide dismutase and catalase activities were reduced. The superoxide dismutase mimetic, Tempol, decreased blood pressure in Mas(-/-) mice but had a minimal effect in control mice. Our results show a major cardiovascular phenotype in Mas(-/-) mice. Mas-deletion results in increased blood pressure, endothelial dysfunction, and an imbalance between NO and reactive oxygen species. Our animals represent a promising model to study angiotensin-(1-7)-mediated cardiovascular effects and to evaluate Mas agonistic compounds as novel cardioprotective and antihypertensive agents based on their beneficial effects on endothelial function.


Subject(s)
Blood Pressure , Endothelium, Vascular/physiopathology , Proto-Oncogene Proteins/deficiency , Receptors, G-Protein-Coupled/deficiency , Vasodilation , Animals , Antioxidants/pharmacology , Aorta/metabolism , Biological Availability , Blood Pressure/drug effects , Blotting, Western , Cyclic N-Oxides/pharmacology , Male , Membrane Glycoproteins , Mice , Mice, Inbred Strains , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidases , Nitric Oxide/metabolism , Oxidative Stress , Phenotype , Proto-Oncogene Mas , Reactive Oxygen Species/metabolism , Spin Labels
16.
J Am Soc Hypertens ; 2(6): 418-24, 2008.
Article in English | MEDLINE | ID: mdl-20409925

ABSTRACT

The Mas gene codes for an angiotensin (1-7) receptor. There is accumulating evidence that Mas is involved in vascular homeostasis. We have recently backcrossed Mas-knockout mice to two different genetic backgrounds, C57Bl/6 and FVB/N. FVB/NMas-deficient mice exhibited elevation in blood pressure (BP) and impaired endothelial function. In the present study, we aimed to address the question whether this phenotype is strain-specific. Therefore, we evaluated endothelial function in C57Bl/6Mas-deficient mice. Similar to FVB/NMas-knockout animals, Mas-deficiency in C57Bl/6 mice leads to endothelial dysfunction evaluated by the acute BP effect of acetylcholine administration. Measurements of nitric oxide (NO) and reactive oxygen species (ROS) and the systems involved in their metabolism revealed an imbalance between these vasoactive factors in C57Bl/6Mas-knockout mice, which may explain the impairment of endothelial function in these animals. However, endothelial dysfunction was less prominent in Mas-deficient mice on a C57Bl/6 background compared to FVB/N. Moreover, C57Bl/6Mas-deficient mice remained normotensive while FVB/N-based animals exhibited elevated BP. The impairment of endothelium-dependent vasodilatory response to acetylcholine in two different mouse strains with Mas deficiency indicates a key role of Mas in endothelial function by its effects on the generation and metabolism of NO and ROS.

17.
Rev. bras. farmacogn ; 16(3): 421-446, jul.-set. 2006. ilus, tab
Article in English | LILACS | ID: lil-571010

ABSTRACT

Inhibition of Angiotensin Converting Enzyme (ACE) is a modern therapeutic target in the treatment of hypertension. Within the enzyme cascade of the renin-angiotensin system, ACE removes histidyl-leucine from angiotensin I to form the physiologically active octapeptide angiotensin II, one of the most potent known vasoconstrictors. Therefore, a rationale for treating hypertension would be to administer drugs or natural compounds which selectively inhibit ACE. The present work constitutes a review of the literature of plants and chemically defined molecules from natural sources with in vitro anti-hypertensive potential based on the inhibition of ACE. The review refers to 321 plants, the parts utilized, type of extract and whether they are active or not. It includes also the names of 158 compounds isolated from higher plants, marine sponges and algae, fungi and snake venom. Some aspects of recent research with natural products directed to produce anti-hypertensive drugs are discussed. In this review, 148 references were cited.


A inibição da Enzima Conversora da Angiotensina (ECA) é um alvo terapêutico moderno e eficaz no tratamento da hipertensão arterial. Na cascata enzimática que envolve o sistema renina-angiotensina, a ECA promove a remoção dos aminoácidos histidil-leucina da angiotensina I para formar o octapeptídio angiotensina II, a qual é fisiologicamente ativa em diversos sistemas, e considerado como um dos mais potentes vasoconstrictores endógenos conhecido. Portanto, uma racionalidade no tratamento da hipertensão seria administrar drogas ou compostos de origem natural que inibam seletivamente a ECA. O presente estudo constitui uma revisão da literatura sobre plantas e moléculas de origem natural com potencial anti-hipertensivo, baseado na inibição in vitro da ECA. A revisão referencia 321 plantas, partes usadas, tipo de extrato e se é ativo ou não. Inclui ainda o nome de 158 compostos isolados de plantas superiores, esponjas e algas marinhas, fungos e venenos de cobra. Alguns aspectos de pesquisa recente com produtos naturais direcionados à produção de drogas anti-hipertensivas também são discutidos. Nesta revisão 148 referências foram consultadas.

18.
Br J Pharmacol ; 138(7): 1215-20, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12711621

ABSTRACT

1. In this study, the role of endogenous H(2)O(2) as an endothelium-dependent relaxant factor was characterised in aortas from C57BL/6J and LDL receptor-deficient mice (LDLR(-/-)). 2. Aortic rings from LDLR(-/-) mice showed impaired endothelium-dependent relaxation to acetylcholine (ACh; 0.001-100 micro M) and to the Ca(2+) ionophore A23187 (0.001-3 micro M) compared with aortic rings from control mice. Endothelium-independent relaxation produced by the NO donor, 3-morpholino-sydnonimine (SIN-1) was not different between strains. 3. Pretreatment of vessels with L-NNA (100 micro M) or L-NNA (100 micro M) plus L-NAME (300 micro M) plus haemoglobin (10 micro M) markedly decreased, but did not abolish the relaxation to ACh in control mice. In the aortas from LDLR(-/-) mice treated with L-NNA (100 micro M), ACh induced a contractile effect. Catalase (800 and 2400 U ml(-1)) shifted to the right the endothelium-dependent relaxation to ACh in aortas from control but not from LDLR(-/-) mice. Aminotriazole (50 mM), which inhibits catalase, abolished its effect on control mice. Treatment of vessels with L-NNA and catalase abolished vasorelaxation induced by ACh. Indomethacin (10 micro M) did not modify the concentration-response curve to ACh. Superoxide dismutase (300 U ml(-1)) did not change ACh-induced relaxation in both strains. 4. Exogenous H(2)O(2) produced a concentration-dependent relaxation in endothelium-denuded aortic rings, which was not different between strains. 5. It is concluded that H(2)O(2) greatly contributes to relaxation to ACh in aorta from control mice. Endothelial-dependent relaxation to ACh is impaired in LDLR(-/-) mice. Reduced biosynthesis or increased inactivation of H(2)O(2) is the possible mechanism responsible for endothelial dysfunction in aortas of atherosclerosis-susceptible LDLR(-/-) mice.


Subject(s)
Arteriosclerosis , Endothelium-Dependent Relaxing Factors/metabolism , Endothelium/abnormalities , Endothelium/metabolism , Hydrogen Peroxide/metabolism , Mice, Knockout/genetics , Mice, Knockout/metabolism , Molsidomine/analogs & derivatives , Muscle Relaxation/drug effects , Muscle, Smooth, Vascular/drug effects , Receptors, LDL/deficiency , Receptors, LDL/genetics , Acetylcholine/metabolism , Acetylcholine/pharmacology , Amitrole/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Catalase/pharmacology , Endothelium-Dependent Relaxing Factors/pharmacology , Hydrogen Peroxide/pharmacology , Indomethacin/pharmacology , Male , Mice , Mice, Inbred C57BL , Molsidomine/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitroarginine/pharmacology , Phenylephrine , Superoxide Dismutase/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...