Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; PP2024 May 31.
Article in English | MEDLINE | ID: mdl-38819969

ABSTRACT

OBJECTIVE: Electrical stimulation is known to enhance bone healing. Novel electrostimulating devices are currently being developed for the treatment of critical-size bone defects in the mandible. Previous numerical models of these devices did not account for possible uncertainties in the input data. We present the numerical model of an electrically stimulated minipig mandible, including optimization and uncertainty quantification (UQ) methods that allow us to determine the most influential parameters. METHODS: Uncertainties in the optimized finite element model are quantified using the polynomial chaos method that is implemented in the open-source Python toolbox Uncertainpy. The volumes of understimulated, beneficially stimulated, and overstimulated tissue are considered quantities of interest because they may significantly impact the expected healing success. Further, the current is a substantial quantity, limiting the lifetime of a battery-driven stimulation unit. With sensitivity analyses, the most critical parameters in the numerical model can be identified. Thus, we can learn which parameters are particularly relevant, for example, when conceptualizing the stimulation unit or planning the manufacturing process. RESULTS: The results of this study show that the parameters of the electrode-tissue interface (ETI), as well as the conductivity within the defect volume, have the most significant impact on the model results. CONCLUSIONS: The UQ results suggest that careful characterization of the ETI and the dielectric tissue properties is crucial to reduce these uncertainties. SIGNIFICANCE: The numerical model regarding uncertainties yields important implications for reliable implant design and clinical translation.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3377-3382, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946605

ABSTRACT

The reproducibility of scientific results gains increasing attention. In the context of biomedical engineering, this applies to experimental studies of three different kinds: in-vivo, in-vitro, and in-silico. Numerical modelling and finite element simulation of bio-electric systems are intricate processes involving manifold steps. A typical example of this process is the electrical stimulation at alloplastic reconstruction plates of the mandible. During the bio-electric modelling and simulation process, diverse methods realised in various software tools are exploited. To comprehensibly render how the final model has been developed requires a thorough documentation. We exploit the W3C provenance model PROV to structure this process and to make it accessible for modellers and for automatic analyses. Different entity types, such as data, model, software, literature, assumptions, and mathematical equations are distinguished; roles of entities within an activity are revealed as well as the involved researchers. In addition, we identify five process patterns: 1) information extraction from the literature; 2) generation of a geometrical model which uses data as input; 3) composition of several geometrical or mathematical models into a combined model; 4) parameterisation, which augments the input model by additional properties; and, finally, 5) refinement, which uses a model in addition to an assumption and generates an enhanced model. By modelling provenance information of a typical bio-electric modelling and simulation process as well as identifying provenance patterns, we provide a first step towards a better documentation of academic investigations in that scientific field.


Subject(s)
Computer Simulation , Electricity , Finite Element Analysis , Software , Electric Stimulation , Humans , Mandible , Models, Theoretical , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...