Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 11 13.
Article in English | MEDLINE | ID: mdl-37955570

ABSTRACT

As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as 'shrubification,' has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacial sedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacial sedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families' environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification.


Subject(s)
Betula , Tracheophyta , Ecosystem , Iceland , Betulaceae , Biodiversity , DNA, Ancient
2.
Geobiology ; 21(1): 102-118, 2023 01.
Article in English | MEDLINE | ID: mdl-36150122

ABSTRACT

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are frequently employed as paleoenvironmental proxies because of the strong empirical correlations between their relative abundances and environmental temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenvironments, the source organisms of these enigmatic compounds have remained elusive, requiring paleoenvironmental applications to rely solely on observed environmental correlations. Previous laboratory and environmental studies have suggested that the globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT producer in nature. Here, we report on experiments with a cultured Acidobacterium, Solibacter usitatus, that makes a large portion of its cellular membrane (24 ± 9% across all experiments) out of a structurally diverse set of tetraethers including the common brGDGTs Ia, IIa, IIIa, Ib, and IIb. Solibacter usitatus was grown across a range of conditions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O2 from 1% to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation across these growth conditions. The temperature response in culture was in close agreement with trends observed in published environmental datasets, supporting a physiological basis for the empirical relationship between brGDGT methylation number and temperature. However, brGDGT methylation at lower temperatures (15 and 20°C) was modulated by culture pH with higher pH systematically increasing the degree of methylation. In contrast, pH had little effect on brGDGT cyclization, supporting the hypothesis that changes in bacterial community composition may underlie the link between cyclization number and pH observed in environmental samples. Oxygen concentration likewise affected brGDGT methylation highlighting the potential for this environmental parameter to impact paleotemperature reconstruction. Low O2 culture conditions further resulted in the production of uncommon brGDGT isomers that could be indicators of O2 limitation. Finally, the production of brGTGTs (trialkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and diethers in S. usitatus suggests a potential biosynthetic pathway for brGDGTs that uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether synthesis from diethers.


Subject(s)
Acidobacteria , Glycerol , Glycerol/metabolism , Temperature , Archaea/metabolism , Bacteria , Hydrogen-Ion Concentration
3.
Sci Adv ; 8(20): eabm7625, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35584215

ABSTRACT

Bacterial brGDGT lipids are a prevalent tool in studies of terrestrial paleoclimate. Their distributions correlate empirically with environmental temperature and pH, and their ubiquity in terrestrial, freshwater, and marine environments gives them wide applicability. Whether correlations with temperature and pH emerge due to a physiological response of source organisms and/or a shift in bacterial community composition remains an open question with important implications for proxy development and application. We applied a newly described technique for grouping brGDGTs to a globally compiled dataset (n = 3129) consisting of all modern sample media known to host brGDGTs. We found strong resemblances in the relationships between brGDGT fractional abundances and both temperature and pH across nearly all sample types examined. We also found near-universal connections between the brGDGTs themselves. Given the markedly different bacterial communities expected to inhabit these settings, these widespread relationships may suggest physiological and/or biochemical bases for observed brGDGT distributions.

4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Article in English | MEDLINE | ID: mdl-33723011

ABSTRACT

Summer warming is driving a greening trend across the Arctic, with the potential for large-scale amplification of climate change due to vegetation-related feedbacks [Pearson et al., Nat. Clim. Chang. (3), 673-677 (2013)]. Because observational records are sparse and temporally limited, past episodes of Arctic warming can help elucidate the magnitude of vegetation response to temperature change. The Last Interglacial ([LIG], 129,000 to 116,000 y ago) was the most recent episode of Arctic warming on par with predicted 21st century temperature change [Otto-Bliesner et al., Philos. Trans. A Math. Phys. Eng. Sci. (371), 20130097 (2013) and Post et al., SciAdv (5), eaaw9883 (2019)]. However, high-latitude terrestrial records from this period are rare, so LIG vegetation distributions are incompletely known. Pollen-based vegetation reconstructions can be biased by long-distance pollen transport, further obscuring the paleoenvironmental record. Here, we present a LIG vegetation record based on ancient DNA in lake sediment and compare it with fossil pollen. Comprehensive plant community reconstructions through the last and current interglacial (the Holocene) on Baffin Island, Arctic Canada, reveal coherent climate-driven community shifts across both interglacials. Peak LIG warmth featured a ∼400-km northward range shift of dwarf birch, a key woody shrub that is again expanding northward. Greening of the High Arctic-documented here by multiple proxies-likely represented a strong positive feedback on high-latitude LIG warming. Authenticated ancient DNA from this lake sediment also extends the useful preservation window for the technique and highlights the utility of combining traditional and molecular approaches for gleaning paleoenvironmental insights to better anticipate a warmer future.


Subject(s)
Climate Change , DNA, Ancient/analysis , DNA, Plant/analysis , Plant Dispersal , Pollen/genetics , Arctic Regions , Fossils , Geologic Sediments/analysis , Lakes , Paleontology
5.
J Phys Chem Lett ; 10(12): 3381-3389, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31141378

ABSTRACT

At an electrode, ions and solvent accumulate to screen charge, leading to a nanometer-scale electric double layer (EDL). The EDL guides electrode passivation in batteries, while in (super)capacitors, it determines charge storage capacity. Despite its importance, quantification of the nanometer-scale and potential-dependent EDL remains a challenging problem. Here, we directly probe changes in the EDL composition with potential using in situ vibrational spectroscopy and molecular dynamics simulations for a Li-ion battery electrolyte (LiClO4 in dimethyl carbonate). The accumulation rate of Li+ ions at the negative surface and ClO4- ions at the positive surface from vibrational spectroscopy compares well to that predicted by simulations using a polarizable APPLE&P force field. The ion solvation shell structure and ion-pairing within the EDL differs significantly from the bulk, especially at the negative electrode, suggesting that the common rationalization of interfacial electrochemical processes in terms of bulk ion solvation should be applied with caution.

SELECTION OF CITATIONS
SEARCH DETAIL
...