Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1168444, 2023.
Article in English | MEDLINE | ID: mdl-37153618

ABSTRACT

The ErbB family of receptor tyrosine kinases is a primary target for small molecules and antibodies for pancreatic cancer treatment. Nonetheless, the current treatments for this tumor are not optimal due to lack of efficacy, resistance, or toxicity. Here, using the novel BiXAb™ tetravalent format platform, we generated bispecific antibodies against EGFR, HER2, or HER3 by considering rational epitope combinations. We then screened these bispecific antibodies and compared them with the parental single antibodies and antibody pair combinations. The screen readouts included measuring binding to the cognate receptors (mono and bispecificity), intracellular phosphorylation signaling, cell proliferation, apoptosis and receptor expression, and also immune system engagement assays (antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity). Among the 30 BiXAbs™ tested, we selected 3Patri-1Cetu-Fc, 3Patri-1Matu-Fc and 3Patri-2Trastu-Fc as lead candidates. The in vivo testing of these three highly efficient bispecific antibodies against EGFR and HER2 or HER3 in pre-clinical mouse models of pancreatic cancer showed deep antibody penetration in these dense tumors and robust tumor growth reduction. Application of such semi-rational/semi-empirical approach, which includes various immunological assays to compare pre-selected antibodies and their combinations with bispecific antibodies, represents the first attempt to identify potent bispecific antibodies against ErbB family members in pancreatic cancer.


Subject(s)
Antibodies, Bispecific , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , ErbB Receptors/metabolism , Signal Transduction , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
2.
MAbs ; 13(1): 1914883, 2021.
Article in English | MEDLINE | ID: mdl-33876707

ABSTRACT

Chemoresistance, particularly to gemcitabine, is a major challenge in pancreatic cancer. The epidermal growth factor receptor (EGFR) and human epidermal growth factor receptors 2 and 3 (HER2, HER3) are expressed in many tumors, and they are relevant therapeutic targets due to their synergistic interaction to promote tumor aggressiveness and therapeutic resistance. Cocktails of antibodies directed against different targets are a promising strategy to overcome these processes. Here, we found by immunohistochemistry that these three receptors were co-expressed in 11% of patients with pancreatic adenocarcinoma. We then developed gemcitabine-resistant pancreatic cancer cell models (SW-1990-GR and BxPC3-GR) and one patient-derived xenograft (PDX2846-GR) by successive exposure to increasing doses of gemcitabine. We showed that expression of EGFR, HER2 and HER3 was increased in these gemcitabine-resistant pancreatic cancer models, and that an antibody mixture against all three receptors inhibited tumor growth in mice and downregulated HER receptors. Finally, we demonstrated that the Pan-HER and gemcitabine combination has an additive effect in vitro and in mice xenografted with the gemcitabine-sensitive or resistant pancreatic models. The mixture of anti-EGFR, HER2 and HER3 antibodies is a good candidate therapeutic approach for gemcitabine-sensitive and -resistant pancreatic cancer.


Subject(s)
Antibodies/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , Pancreatic Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxycytidine/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , ErbB Receptors/metabolism , Female , Humans , Mice, Nude , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/immunology , Receptor, ErbB-3/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
3.
Cancer Immunol Immunother ; 68(10): 1561-1572, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31494742

ABSTRACT

Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive T cell response. A central role in this process has been attributed to CD4+ T cells, but the relevant T cell epitopes, mostly derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracellular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab or other anti-CD20 antibodies.


Subject(s)
Antigens, CD20/immunology , CD4-Positive T-Lymphocytes/immunology , Lymphoma/drug therapy , Animals , Female , HLA-DRB1 Chains/immunology , Humans , Interferon-gamma/biosynthesis , Lymphoma/immunology , Mice , Rituximab/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...