Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 80(1): 260-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11831525

ABSTRACT

An experiment was designed to assess the mineral status of 60 Angus yearling beef steers grazing bahiagrass pastures fertilized with large amounts of biosolids from three sources: Baltimore, MD; Tampa, FL; and Largo, FL. Biosolids were classified as exceptional quality and thus had no regulatory restrictions on loading rate. They differed primarily in concentration of Mo (12 to 56 mg/kg of DM). Residual treatments (biosolids applied only the previous year) for Baltimore biosolids were applied at 22.4 and 44.8 t/ha, and Tampa biosolids were either 16.8 or 33.6 t/ ha. The reapplied treatments (applied in consecutive years) for both Baltimore and Tampa sludges were applied at 22.4, 44.8, 16.8 , and 33.6 t/ha, respectively. The two Largo biosolids treatments were either 56 or 112 t/ha and were applied only in the 2nd yr. Liver biopsies and blood samples were collected on d 1, 95, and 180. Liver and plasma were analyzed for minerals and blood was analyzed for hemoglobin, hematocrit, and superoxide dismutase of polymorphonuclear neutrophils. Experimental animals were generally adequate in macromineral status and Co, Fe, and Mn throughout the experiment. Copper deficiency was evident based on the clinical signs of hair coat discoloration, very low plasma Cu at d 95, and the continuous decline in liver Cu over 180 d. A sharp decline in plasma Cu was observed for all treatments from d 1 to 95, after which Cu concentrations rebounded to normal concentrations (> 0.65 microg/mL) by d 180. Liver Mo was well below concentrations indicating toxicity (> 5.0 mg/kg). The steep decline in liver Cu over the first 95 d reflects the dietary Cu deficiency and the possibility of high forage S (0.26 to 0.52%) interfering with Cu metabolism. Biosolids application to bahiagrass pastures was not detrimental to mineral status except for declining Cu stores; however, the controls likewise declined, but to a lesser degree.


Subject(s)
Cattle/growth & development , Minerals/metabolism , Animal Feed , Animals , Biopsy , Body Composition , Cattle/physiology , Copper/deficiency , Copper/metabolism , Hematocrit/veterinary , Hemoglobins/analysis , Liver/chemistry , Liver/metabolism , Male , Minerals/administration & dosage , Molybdenum/metabolism , Poaceae
2.
J Anim Sci ; 78(5): 1331-7, 2000 May.
Article in English | MEDLINE | ID: mdl-10834590

ABSTRACT

Angus x Hereford heifers (n = 50) were randomly assigned to bahiagrass pastures treated with biosolids varying in mineral content and evaluated for mineral status, with special attention to Cu. Biosolids and NH4NO3 were all applied at the rate of either 179 kg N/ha (X) or twice this (2X). Fertilizer was applied to .81-ha pastures for the following treatments: 1) Baltimore biosolids (1X = 179 kg N/ha); 2) Baltimore biosolids (2X = 358 kg N/ha); 3) Tampa biosolids (1X = 179 kg N/ha); 4) Tampa biosolids (2X = 358 kg N/ha); or 5) control NH4NO3 (1X = 179 kg N/ha) applied at two times. Pastures were divided into five blocks with each treatment represented once in each block. Copper loads varied from 8.8 to 42.2 kg/ha, and Mo loads varied from .27 to 1.11 kg/ha. Heifers (two per pasture) grazed their assigned pastures exclusively for 176 d. Liver biopsies were taken from all animals at d 1, 99, and 176, and blood samples on d 1, 50, 99, 135, and 176. Liver and plasma were analyzed for selected mineral contents, and blood was analyzed for hemoglobin and hematocrit. Experimental animals were generally low in mineral status when assigned to pastures and deficient in Se and P. By d 50, plasma Ca, Mg, Se, P, and Zn were adequate for all treatments. Plasma Cu declined (P < .03) for all treatments from d 50 to 176. Plasma Cu reflected depleted liver Cu storage, with the two Tampa and highest Baltimore treatment means lower in plasma Cu than the control at 176 d. Liver Fe concentrations were adequate for all treatments, and Mo concentrations (< 2.18 mg/kg) did not approach levels indicative of toxicity. Liver Cu declined (P < .05) with time for all treatments. By d 99, animals receiving the two Baltimore treatments and the lowest Tampa application rate had lower (P < .05) liver Cu than the control, and all treatments were lower at 176 d. The decline of animal Cu status (liver and plasma) reflects the low Cu status of bahiagrass and the possibility of high forage S (.30 to .47%) interfering with Cu metabolism. Forage Mo was low but was slightly higher in biosolids-treated pastures. High levels of biosolids applications to bahiagrass pastures were not detrimental to mineral status except Cu, which had a tendency to decline in plasma and for all biosolids treatments declined in liver.


Subject(s)
Animal Feed , Body Composition , Cattle/growth & development , Minerals/metabolism , Animals , Copper/metabolism , Hematocrit , Hemoglobins/analysis , Liver/metabolism , Molybdenum/metabolism , Poaceae
3.
J Dairy Sci ; 82(12): 2642-50, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10629812

ABSTRACT

The effects of feeding different sources and quantities of Cu to heifers were evaluated in a 211-d experiment. Forty crossbred predominantly Brahman x Hereford heifers averaging 13.5 mo of age and 301 kg were initially depleted of Cu. The depletion diet was fed for 70 d and consisted of low Cu and high antagonist minerals, Fe, S, and Mo at 1000 mg/kg, 0.5%, and 5 mg/kg (dry basis), respectively. On d 71, heifers continued to receive the antagonistic minerals and were allotted equally to five Cu treatments: 1) control, no additional Cu source; 2) 8 mg of Cu/kg from CuSO4; 3) 16 mg of Cu/kg from CuSO4; 4) 8 mg of Cu/kg from Cu lysine; and 5) 16 mg of Cu/kg from Cu lysine. When no notable change in concentration of Cu in the liver was observed, d 169, a second diet was formulated. The heifers were fed the same Cu treatments, but S and Mo were removed and Fe was lowered to 50 mg/kg. This diet was then fed for the final 42 d of the experiment. In addition to performance, concentrations of Cu, Fe, and Zn in the plasma and liver, plasma ceruloplasmin, hemoglobin, superoxide dismutase (SOD) activity of neutrophils and lymphocytes, and a cell mediated immune response (phytohemagglutinin-P, PHA) were measured. Heifers in this study had increased growth over time, but there were no treatment differences for growth and average daily gain. Liver and plasma Cu concentrations were not greatly influenced by different supplemental Cu sources. However, compared with other treatments, Cu lysine (16 mg/kg) increased liver Cu in cattle that were deficient and tended to increase plasma Cu in animals that were marginally deficient in Cu. Iron concentrations decreased over time in liver and plasma, but there was no difference in Fe and Zn concentrations in liver and plasma among treatments. Differences in ceruloplasmin and hemoglobin concentrations were significant over time but not among treatments. The SOD activity in neutrophils did not change over time, but SOD activity of lymphocytes increased over time. For the PHA immune response test, there was no effect of time or a time by treatment interaction. These data suggest that all Cu sources were available, but Cu at 16 mg/kg from Cu lysine was more beneficial than were other sources and particularly for heifers with low Cu status.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Copper Sulfate/administration & dosage , Copper/deficiency , Lysine/administration & dosage , Nutritional Status , Animals , Copper/antagonists & inhibitors , Copper/blood , Dietary Supplements , Female , Iron/administration & dosage , Liver/chemistry , Lymphocytes/enzymology , Molybdenum/administration & dosage , Neutrophils/enzymology , Sulfur/administration & dosage , Superoxide Dismutase/blood , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...