Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901899

ABSTRACT

Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.


Subject(s)
Ciliopathies , Planarians , Animals , Humans , Mediterranea , Flagella , Cilia/physiology , Planarians/genetics , Mutation
2.
J Cell Mol Med ; 26(14): 3913-3930, 2022 07.
Article in English | MEDLINE | ID: mdl-35702951

ABSTRACT

Glioblastoma (GBM) is the most common malignant brain tumour. GBM cells have the ability to infiltrate into the surrounding brain tissue, which results in a significant decrease in the patient's survival rate. Infiltration is a consequence of the low adhesion and high migration of the tumour cells, two features being associated with the highly remodelled extracellular matrix (ECM). In this study, we report that ECM composition is partially regulated at the post-transcriptional level by miRNA. Particularly, we show that miR-218, a well-known miRNA suppressor, is involved in the direct regulation of ECM components, tenascin-C (TN-C) and syndecan-2 (SDC-2). We demonstrated that the overexpression of miR-218 reduces the mRNA and protein expression levels of TN-C and SDC-2, and subsequently influences biomechanical properties of GBM cells. Atomic force microscopy (AFM) and real-time migration analysis revealed that miR-218 overexpression impairs the migration potential and enhances the adhesive properties of cells. AFM analysis followed by F-actin staining demonstrated that the expression level of miR-218 has an impact on cell stiffness and cytoskeletal reorganization. Global gene expression analysis showed deregulation of a number of genes involved in tumour cell motility and adhesion or ECM remodelling upon miR-218 treatment, suggesting further indirect interactions between the cells and ECM. The results demonstrated a direct impact of miR-218 reduction in GBM tumours on the qualitative ECM content, leading to changes in the rigidity of the ECM and GBM cells being conducive to increased invasiveness of GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , MicroRNAs , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Tenascin/genetics , Tenascin/metabolism
3.
J Med Genet ; 56(11): 769-777, 2019 11.
Article in English | MEDLINE | ID: mdl-31366608

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is a motile ciliopathy, whose symptoms include airway infections, male infertility and situs inversus. Apart from the typical forms of PCD, rare syndromic PCD forms exist. Mutations of the X-linked OFD1 gene cause several syndromic ciliopathies, including oral-facial-digital syndrome type 1, Joubert syndrome type 10 (JBTS10), and Simpson-Golabi-Behmel syndrome type 2, the latter causing the X-linked syndromic form of PCD. Neurological and skeletal symptoms are characteristic for these syndromes, with their severity depending on the location of the mutation within the gene. OBJECTIVES: To elucidate the role of motile cilia defects in the respiratory phenotype of PCD patients with C-terminal OFD1 mutations. METHODS: Whole-exome sequencing in a group of 120 Polish PCD patients, mutation screening of the OFD1 coding sequence, analysis of motile cilia, and magnetic resonance brain imaging. RESULTS: Four novel hemizygous OFD1 mutations, in exons 20 and 21, were found in men with a typical PCD presentation but without severe neurological, skeletal or renal symptoms characteristic for other OFD1-related syndromes. Magnetic resonance brain imaging in two patients did not show a molar tooth sign typical for JBTS10. Cilia in the respiratory epithelium were sparse, unusually long and displayed a defective motility pattern. CONCLUSION: Consistent with the literature, truncations of the C-terminal part of OFD1 (exons 16-22) almost invariably cause a respiratory phenotype (due to motile cilia defects) while their impact on the primary cilia function is limited. We suggest that exons 20-21 should be included in the panel for regular mutation screening in PCD.


Subject(s)
Ciliary Motility Disorders/genetics , Exons/genetics , Mutation/genetics , Proteins/genetics , Cerebellar Diseases/genetics , Cilia/genetics , Exome/genetics , Female , Genetic Diseases, X-Linked/genetics , Humans , Male , Muscle Hypotonia/genetics , Pedigree , Phenotype
4.
Am J Respir Cell Mol Biol ; 61(4): 440-449, 2019 10.
Article in English | MEDLINE | ID: mdl-30916986

ABSTRACT

Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous hereditary disease from a class of ciliopathies. In spite of the recent progress, the genetic basis of PCD in one-third of patients remains unknown. In search for new genes and/or mutations, whole-exome sequencing was performed in 120 unrelated Polish patients with PCD, in whom no genetic cause of PCD was earlier identified. Among a number of pathogenic variants in PCD genes, mutations in CFAP300 (alias C11orf70) were detected. Extended screening in the whole Polish PCD cohort revealed the relatively high frequency (3.6%) of otherwise rare c.[198_200 del_insCC] variant, indicating that it should be included in population-specific genetic tests for PCD in Slavic populations. Immunofluorescence analysis of the respiratory epithelial cells from patients with CFAP300 mutations revealed the absence or aberrant localization of outer and inner dynein arm markers, consistent with transmission electron microscope images indicating the lack of both dynein arms. Interestingly, the disparate localization of DNAH5 and DNALI1 proteins in patients with CFAP300 mutations suggested differential mechanisms for the trafficking of preassembled outer and inner dynein arms to the axoneme. The profile of CFAP300 expression during ciliogenesis in suspension culture was consistent with its role in cilia assembly. Gene silencing experiments, performed in a model organism, Schmidtea mediterranea (flatworm), pointed to the conserved role of CFAP300 in ciliary function.


Subject(s)
Cilia/physiology , Ciliary Motility Disorders/genetics , Cytoskeletal Proteins/genetics , Dyneins/metabolism , Ethnicity/genetics , INDEL Mutation , Adolescent , Adult , Animals , Axoneme/metabolism , Axoneme/ultrastructure , Cell Movement , Child , Child, Preschool , Cilia/ultrastructure , Ciliary Motility Disorders/ethnology , Conserved Sequence , Cytoskeletal Proteins/physiology , Female , Helminth Proteins/genetics , Humans , Infant , Locomotion , Male , Poland , Protein Transport , RNA Interference , Exome Sequencing , Young Adult , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...