Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Artif Intell Med ; 148: 102753, 2024 02.
Article in English | MEDLINE | ID: mdl-38325931

ABSTRACT

BACKGROUND: In recent years, Computer Aided Diagnosis (CAD) has become an important research area that attracted a lot of researchers. In medical diagnostic systems, several attempts have been made to build and enhance CAD applications to avoid errors that can cause dangerously misleading medical treatments. The most exciting opportunity for promoting the performance of CAD system can be accomplished by integrating Artificial Intelligence (AI) in medicine. This allows the effective automation of traditional manual workflow, which is slow, inaccurate and affected by human errors. AIMS: This paper aims to provide a complete Computer Aided Disease Diagnosis (CAD2) strategy based on Machine Learning (ML) techniques that can help clinicians to make better medical decisions. METHODS: The proposed CAD2 consists of three main sequential phases, namely; (i) Outlier Rejection Phase (ORP), (ii) Feature Selection Phase (FSP), and (iii) Classification Phase (CP). ORP is implemented to reject outliers using new Outlier Rejection Technique (ORT) that contains two sequential stages called Fast Outlier Rejection (FOR) and Accurate Outlier Rejection (AOR). The most informative features are selected through FSP using Hybrid Selection Technique (HST). HST includes two main stages called Quick Selection Stage (QS2) using fisher score as a filter method and Precise Selection Stage (PS2) using a Hybrid Bio-inspired Optimization (HBO) technique as a wrapper method. Finally, actual diagnose takes place through CP, which relies on Ensemble Classification Technique (ECT). RESULTS: The proposed CAD2 has been tested experimentally against recent disease diagnostic strategies using two different datasets in which the first contains several diseases, while the second includes data for Covid-19 patients only. Experimental results have proven the high efficiency of the proposed CAD2 in terms of accuracy, error, precision, and recall compared with other competitors. Additionally, CAD2 strategy provides the best Wilcoxon signed rank test and Friedman test measurements against other strategies according to both datasets. CONCLUSION: It is concluded that CAD2 strategy based on ORP, FSP, and CP gave an accurate diagnosis compared to other strategies because it gave the highest accuracy and the lowest error and implementation time.


Subject(s)
Artificial Intelligence , Diagnosis, Computer-Assisted , Humans , Diagnosis, Computer-Assisted/methods , Machine Learning
2.
Artif Intell Med ; 143: 102618, 2023 09.
Article in English | MEDLINE | ID: mdl-37673562

ABSTRACT

The world has recently been exposed to a fierce attack from many viral diseases, such as Covid-19, that exhausted medical systems around the world. Such attack had a negative impact not only on the health status of people or the high death rate, but also had a bad impact on the economic situation, which affected all countries of the world especially the poor and the developing ones. Monkeypox is one of the latest viral diseases that may cause a pandemic in the near future if not dealt and diagnosed with appropriately. This paper provides a new strategy for diagnosing monkeypox, which is called; Accurate Monkeypox Diagnosing Strategy (AMDS). The proposed AMDS consists of two phases, which are; (i) pre-processing and (ii) classification. During the pre-processing phase, the most effective feature are selected using Binary Tiki-Taka Algorithm (BTTA). On the other hand, in the classification phase, ensemble classification is used for diagnosing new cases, which combines evidence from three different new classifiers, namely; (a) Layered K-Nearest Neighbors (LKNN), (b) Statistical Naïve Bayes (SNB), and (c) Deep Learning Classifier (DLC). Moreover, the decisions of the proposed classifiers are merged in a new voting scheme called Fuzzified Voting Scheme (FVS). AMDS has been compared against recent diagnostic strategies. Experimental results have proven that AMDS outperforms other monkeypox diagnostic strategies as it introduces the most accurate diagnosis according to two different datasets.


Subject(s)
COVID-19 , Mpox (monkeypox) , Humans , Mpox (monkeypox)/diagnosis , Bayes Theorem , COVID-19/diagnosis , Algorithms , Cluster Analysis , COVID-19 Testing
3.
Health Inf Sci Syst ; 11(1): 36, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37588694

ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disease that impacts a child's way of behavior and social communication. In early childhood, children with ASD typically exhibit symptoms such as difficulty in social interaction, limited interests, and repetitive behavior. Although there are symptoms of ASD disease, most people do not understand these symptoms and therefore do not have enough knowledge to determine whether or not a child has ASD. Thus, early detection of ASD children based on accurate diagnosis model based on Artificial Intelligence (AI) techniques is a critical process to reduce the spread of the disease and control it early. Through this paper, a new Diagnostic Autism Spectrum Disorder (DASD) strategy is presented to quickly and accurately detect ASD children. DASD contains two layers called Data Filter Layer (DFL) and Diagnostic Layer (DL). Feature selection and outlier rejection processes are performed in DFL to filter the ASD dataset from less important features and incorrect data before using the diagnostic or detection method in DL to accurately diagnose the patients. In DFL, Binary Gray Wolf Optimization (BGWO) technique is used to select the most significant set of features while Binary Genetic Algorithm (BGA) technique is used to eliminate invalid training data. Then, Ensemble Diagnosis Methodology (EDM) as a new diagnostic technique is used in DL to quickly and precisely diagnose ASD children. In this paper, the main contribution is EDM that consists of several diagnostic models including Enhanced K-Nearest Neighbors (EKNN) as one of them. EKNN represents a hybrid technique consisting of three methods called K-Nearest Neighbors (KNN), Naïve Bayes (NB), and Chimp Optimization Algorithm (COA). NB is used as a weighed method to convert data from feature space to weight space. Then, COA is used as a data generation method to reduce the size of training dataset. Finally, KNN is applied on the reduced data in weight space to quickly and accurately diagnose ASD children based on new training dataset with small size. ASD blood tests dataset is used to test the proposed DASD strategy against other recent strategies [1]. It is concluded that the DASD strategy is superior to other strategies based on many performance measures including accuracy, error, recall, precision, micro_average precision, macro_average precision, micro_average recall, macro_average recall, F1-measure, and implementation-time with values equal to 0.93, 0.07, 0.83, 0.82, 0.80, 0.83, 0.79, 0.81, 0.79, and 1.5 s respectively.

4.
Neural Comput Appl ; : 1-25, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37362572

ABSTRACT

Covid-19 is a very dangerous disease as a result of the rapid and unprecedented spread of any previous disease. It is truly a crisis that threatens the world since its first appearance in December 2019 until our time. Due to the lack of a vaccine that has proved sufficiently effective so far, the rapid and more accurate diagnosis of this disease is extremely necessary to enable the medical staff to identify infected cases and isolate them from the rest to prevent further loss of life. In this paper, Covid-19 diagnostic strategy (CDS) as a new classification strategy that consists of two basic phases: Feature selection phase (FSP) and diagnosis phase (DP) has been introduced. During the first phase called FSP, the best set of features in laboratory test findings for Covid-19 patients will be selected using enhanced gray wolf optimization (EGWO). EGWO combines both types of selection techniques called wrapper and filter. Accordingly, EGWO includes two stages called filter stage (FS) and wrapper stage (WS). While FS uses many different filter methods, WS uses a wrapper method called binary gray wolf optimization (BGWO). The second phase called DP aims to give fast and more accurate diagnosis using a hybrid diagnosis methodology (HDM) based on the selected features from FSP. In fact, the HDM consists of two phases called weighting patient phase (WP2) and diagnostic patient phase (DP2). WP2 aims to calculate the belonging degree of each patient in the testing dataset to class category using naïve Bayes (NB) as a weight method. On the other hand, K-nearest neighbor (KNN) will be used in DP2 based on the weights of patients in the testing dataset as a new training dataset to give rapid and more accurate detection. The suggested CDS outperforms other strategies according to accuracy, precision, recall (or sensitivity) and F-measure calculations that are equal to 99%, 88%, 90% and 91%, respectively, as showed in experimental results.

5.
J Ambient Intell Humaniz Comput ; 14(6): 7621-7648, 2023.
Article in English | MEDLINE | ID: mdl-37228700

ABSTRACT

An optimization algorithm is a step-by-step procedure which aims to achieve an optimum value (maximum or minimum) of an objective function. Several natural inspired meta-heuristic algorithms have been inspired to solve complex optimization problems by utilizing the potential advantages of swarm intelligence. In this paper, a new nature-inspired optimization algorithm which mimics the social hunting behavior of Red Piranha is developed, which is called Red Piranha Optimization (RPO). Although the piranha fish is famous for its extreme ferocity and thirst for blood, it sets the best examples of cooperation and organized teamwork, especially in the case of hunting or saving their eggs. The proposed RPO is established through three sequential phases, namely; (i) searching for a prey, (ii) encircling the prey, and (iii) attacking the prey. A mathematical model is provided for each phase of the proposed algorithm. RPO has salient properties such as; (i) it is very simple and easy to implement, (ii) it has a perfect ability to bypass local optima, and (iii) it can be employed for solving complex optimization problems covering different disciplines. To ensure the efficiency of the proposed RPO, it has been applied in feature selection, which is one of the important steps in solving the classification problem. Hence, recent bio-inspired optimization algorithms as well as the proposed RPO have been employed for selecting the most important features for diagnosing Covid-19. Experimental results have proven the effectiveness of the proposed RPO as it outperforms the recent bio-inspired optimization techniques according to accuracy, execution time, micro average precision, micro average recall, macro average precision, macro average recall, and f-measure calculations.

6.
Comput Biol Med ; 152: 106383, 2023 01.
Article in English | MEDLINE | ID: mdl-36481764

ABSTRACT

In May 2022, monkeypox re-emerged as a rare zoonotic disease that is an important viral disease for public health. Monkeypox can be transmitted from animals to humans, between humans through close contact with an infected human, or with a virus stained substance. Through this paper, a new detection strategy based on artificial intelligence techniques is provided to early detect monkeypox patients. This strategy is called Human Monkeypox Detection (HMD) strategy and mainly consists of two main phases, which are; (i) Selection Phase (SP) and (ii) Detection Phase (DP). While SP tries to select the best features, DP tries to introduce fast and accurate detection based on valid data from SP. In SP, an Improved Binary Chimp Optimization (IBCO) algorithm as a new feature selection algorithm is introduced to select valuable features before learning an Ensemble Diagnosis (ED) model as a new diagnostic algorithm in the next phase called DP. In fact, the proposed IBCO algorithm is a hybrid selection algorithm that includes both filter and wrapper methods. IBCO consists of a filter layer called Filter Selection Layer (FSL) and a wrapper layer called Wrapper Selection Layer (WSL). At first, monkeypox dataset is entered into FSL to quickly select meaningful features by using 'm' filter selection techniques. Then, 'm' sets of selected features are fed into WSL to construct the initial population of Binary Chimp Optimization (BCO) algorithm to precisely choose the best set of features for the next phase (DP). Finally, the ED model will be correctly trained on the filtered data from FSL. This model consists of three diagnostic algorithms called Weighted Naïve Bayes (WNB), Weighted K-Nearest Neighbors (WKNN), and deep learning which are combined using a new weighted voting method to provide the best diagnostic results. The weighted values of WNB algorithm are determined by measuring the impact of each feature on the class categories while the Grey Wolf Optimization (GWO) algorithm is used to determine the weighted values of WKNN. Experimental results illustrated that the suggested feature selection algorithm called IBCO outperforms other modern feature selection methods and also the proposed ED model outperforms other modern diagnostic models. At the end, the HMD strategy gives the best results compared to other modern strategies with accuracy, precision, and recall values equal 98.48%, 91.1% and 88.91% respectively. Also, the HMD gives 92.56%,89.01%,88.01%,85.01%, 83.9%, and 5.4 s for micro-average precision, micro-average recall, macro-average precision, macro-average recall, F1-measure, and implementation time values respectively.


Subject(s)
Artificial Intelligence , Mpox (monkeypox) , Humans , Bayes Theorem , Algorithms , Data Mining
7.
Pattern Recognit ; 128: 108693, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35400761

ABSTRACT

Covid-19, what a strange, unpredictable mutated virus. It has baffled many scientists, as no firm rule has yet been reached to predict the effect that the virus can inflict on people if they are infected with it. Recently, many researches have been introduced for diagnosing Covid-19; however, none of them pay attention to predict the effect of the virus on the person's body if the infection occurs but before the infection really takes place. Predicting the extent to which people will be affected if they are infected with the virus allows for some drastic precautions to be taken for those who will suffer from serious complications, while allowing some freedom for those who expect not to be affected badly. This paper introduces Covid-19 Prudential Expectation Strategy (CPES) as a new strategy for predicting the behavior of the person's body if he has been infected with Covid-19. The CPES composes of three phases called Outlier Rejection Phase (ORP), Feature Selection Phase (FSP), and Classification Phase (CP). For enhancing the classification accuracy in CP, CPES employs two proposed techniques for outlier rejection in ORP and feature selection in FSP, which are called Hybrid Outlier Rejection (HOR) method and Improved Binary Genetic Algorithm (IBGA) method respectively. In ORP, HOR rejects outliers in the training data using a hybrid method that combines standard division and Binary Gray Wolf Optimization (BGWO) method. On the other hand, in FSP, IBGA as a hybrid method selects the most useful features for the prediction process. IBGA includes Fisher Score (FScore) as a filter method to quickly select the features and BGA as a wrapper method to accurately select the features based on the average accuracy value from several classification models as a fitness function to guarantee the efficiency of the selected subset of features with any classifier. In CP, CPES has the ability to classify people based on their bodies' reaction to Covid-19 infection, which is built upon a proposed Statistical Naïve Bayes (SNB) classifier after performing the previous two phases. CPES has been compared against recent related strategies in terms of accuracy, error, recall, precision, and run-time using Covid-19 dataset [1]. This dataset contains routine blood tests collected from people before and after their infection with covid-19 through a Web-based form created by us. CPES outperforms the competing methods in experimental results because it provides the best results with values of 0.87, 0.13, 0.84, and 0.79 for accuracy, error, precision, and recall.

8.
Comput Biol Med ; 140: 105112, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34906797

ABSTRACT

Unfortunately, Covid-19 has infected millions of people very quickly, and it continues to infect people and spreads rapidly. Although there are some common symptoms of Covid-19, its effect varies from one individual to another. Estimating the severity of the infection has become a critical need as it can guide the decision makers to take an accurate and timely response. It will be valuable to provide early warning before infection takes place about susceptibility to the disease, especially since the lack of symptoms is a feature of the Covid-19 pandemic. Asymptomatic patients are considered as "silent diffusers" of the virus; hence, detecting people who will be asymptomatic before actual infection takes place will certainly safe the society from the uncontrolled and unseen spread of the virus. People can be classified based on their vulnerability to Covid-19 even before they are infected. Accordingly, precautionary measures can be taken individually based on the persons' Covid-19 susceptibility. This paper introduces a Covid-19's Integrated Herd Immunity (CIHI) strategy. The aim of CIHI is to keep the society safe with the minimal losses even with the existence of Covid-19. This can be accomplished by two basic factors; the first is an accurate prediction of the cases who will be asymptomatic if they were infected by the virus, while the second is to take suitable precautions for those who are predicted to be badly affected by the virus even before the actual infection takes place. CIHI is realized through a new classification strategy called Distance Based Classification Strategy (DBCS) which classifies people based on their vulnerability to Covid-19 infection. The proposed DBCS classifies individuals into six different types, then suitable precautionary measures can be taken for every type. DBCS can also identify future symptomatic and asymptomatic cases. In fact, DBCS consists of three sequential phases, which are; (i) Outlier Rejection Phase (ORP) using Hybrid Outlier Rejection (HOR) method, (ii) Feature Selection Phase (FSP) using Hybrid Feature Selection (HFS) method, and (iii) Classification Phase (CP) using Accumulative K-Nearest Neighbors (AKNN). DBCS has been compared with recent Covid-19 diagnosing techniques based on "NileDS" dataset. Experimental results have proven the efficiency and applicability of the proposed strategy as it provides the best classification accuracy.

9.
Pattern Recognit ; 119: 108110, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34149100

ABSTRACT

COVID-19, as an infectious disease, has shocked the world and still threatens the lives of billions of people. Early detection of COVID-19 patients is an important issue for treating and controlling the disease from spreading. In this paper, a new strategy for detecting COVID-19 infected patients will be introduced, which is called Distance Biased Naïve Bayes (DBNB). The novelty of DBNB as a proposed classification strategy is concentrated in two contributions. The first is a new feature selection technique called Advanced Particle Swarm Optimization (APSO) which elects the most informative and significant features for diagnosing COVID-19 patients. APSO is a hybrid method based on both filter and wrapper methods to provide accurate and significant features for the next classification phase. The considered features are extracted from Laboratory findings for different cases of people, some of whom are COVID-19 infected while some are not. APSO consists of two sequential feature selection stages, namely; Initial Selection Stage (IS2) and Final Selection Stage (FS2). IS2 uses filter technique to quickly select the most important features for diagnosing COVID-19 patients while removing the redundant and ineffective ones. This behavior minimizes the computational cost in FS2, which is the next stage of APSO. FS2 uses Binary Particle Swarm Optimization (BPSO) as a wrapper method for accurate feature selection. The second contribution of this paper is a new classification model, which combines evidence from statistical and distance based classification models. The proposed classification technique avoids the problems of the traditional NB and consists of two modules; Weighted Naïve Bayes Module (WNBM) and Distance Reinforcement Module (DRM). The proposed DBNB tries to accurately detect infected patients with the minimum time penalty based on the most effective features selected by APSO. DBNB has been compared with recent COVID-19 diagnose strategies. Experimental results have shown that DBNB outperforms recent COVID-19 diagnose strategies as it introduce the maximum accuracy with the minimum time penalty.

10.
Appl Soft Comput ; 99: 106906, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33204229

ABSTRACT

COVID-19, as an infectious disease, has shocked the world and still threatens the lives of billions of people. Recently, the detection of coronavirus (COVID-19) is a critical task for the medical practitioner. Unfortunately, COVID-19 spreads so quickly between people and approaches millions of people worldwide in few months. It is very much essential to quickly and accurately identify the infected people so that prevention of spread can be taken. Although several medical tests have been used to detect certain injuries, the hopefully detection efficiency has not been accomplished yet. In this paper, a new Hybrid Diagnose Strategy (HDS) has been introduced. HDS relies on a novel technique for ranking selected features by projecting them into a proposed Patient Space (PS). A Feature Connectivity Graph (FCG) is constructed which indicates both the weight of each feature as well as the binding degree to other features. The rank of a feature is determined based on two factors; the first is the feature weight, while the second is its binding degree to its neighbors in PS. Then, the ranked features are used to derive the classification model that can classify new persons to decide whether they are infected or not. The classification model is a hybrid model that consists of two classifiers; fuzzy inference engine and Deep Neural Network (DNN). The proposed HDS has been compared against recent techniques. Experimental results have shown that the proposed HDS outperforms the other competitors in terms of the average value of accuracy, precision, recall, and F-measure in which it provides about of 97.658%, 96.756%, 96.55%, and 96.615% respectively. Additionally, HDS provides the lowest error value of 2.342%. Further, the results were validated statistically using Wilcoxon Signed Rank Test and Friedman Test.

11.
Knowl Based Syst ; 205: 106270, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-32834553

ABSTRACT

COVID-19 infection is growing in a rapid rate. Due to unavailability of specific drugs, early detection of (COVID-19) patients is essential for disease cure and control. There is a vital need to detect the disease at early stage and instantly quarantine the infected people. Many research have been going on, however, none of them introduces satisfactory results yet. In spite of its simplicity, K-Nearest Neighbor (KNN) classifier has proven high flexibility in complex classification problems. However, it can be easily trapped. In this paper, a new COVID-19 diagnose strategy is introduced, which is called COVID-19 Patients Detection Strategy (CPDS). The novelty of CPDS is concentrated in two contributions. The first is a new hybrid feature selection Methodology (HFSM), which elects the most informative features from those extracted from chest Computed Tomography (CT) images for COVID-19 patients and non COVID-19 peoples. HFSM is a hybrid methodology as it combines evidence from both wrapper and filter feature selection methods. It consists of two stages, namely; Fast Selection Stage (FS2) and Accurate Selection Stage (AS2). FS2relies on filter, while AS2 uses Genetic Algorithm (GA) as a wrapper method. As a hybrid methodology, HFSM elects the significant features for the next detection phase. The second contribution is an enhanced K-Nearest Neighbor (EKNN) classifier, which avoids the trapping problem of the traditional KNN by adding solid heuristics in choosing the neighbors of the tested item. EKNN depends on measuring the degree of both closeness and strength of each neighbor of the tested item, then elects only the qualified neighbors for classification. Accordingly, EKNN can accurately detect infected patients with the minimum time penalty based on those significant features selected by HFSM technique. Extensive experiments have been done considering the proposed detection strategy as well as recent competitive techniques on the chest CT images. Experimental results have shown that the proposed detection strategy outperforms recent techniques as it introduces the maximum accuracy rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...