Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Adv Sci (Weinh) ; : e2401617, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713753

ABSTRACT

DNA nanostructures exhibit versatile geometries and possess sophisticated capabilities not found in other nanomaterials. They serve as customizable nanoplatforms for orchestrating the spatial arrangement of molecular components, such as biomolecules, antibodies, or synthetic nanomaterials. This is achieved by incorporating oligonucleotides into the design of the nanostructure. In the realm of drug delivery to cancer cells, there is a growing interest in active targeting assays to enhance efficacy and selectivity. The active targeting approach involves a "key-lock" mechanism where the carrier, through its ligand, recognizes specific receptors on tumor cells, facilitating the release of drugs. Various DNA nanostructures, including DNA origami, Tetrahedral, nanoflower, cruciform, nanostar, nanocentipede, and nanococklebur, can traverse the lipid layer of the cell membrane, allowing cargo delivery to the nucleus. Aptamers, easily formed in vitro, are recognized for their targeted delivery capabilities due to their high selectivity for specific targets and low immunogenicity. This review provides a comprehensive overview of recent advancements in the formation and modification of aptamer-modified DNA nanostructures within drug delivery systems.

2.
Int J Biol Macromol ; : 132579, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795895

ABSTRACT

Cancer phototherapy has introduced a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.

3.
Int J Biol Macromol ; 268(Pt 2): 131829, 2024 May.
Article in English | MEDLINE | ID: mdl-38677670

ABSTRACT

Nanocelluloses exhibit immense potential in catalytic and biomedical applications. Their unique properties, biocompatibility, and versatility make them valuable in various industries, contributing to advancements in environmental sustainability, catalysis, energy conversion, drug delivery, tissue engineering, biosensing/imaging, and wound healing/dressings. Nanocellulose-based catalysts can efficiently remove pollutants from contaminated environments, contributing to sustainable and cleaner ecosystems. These materials can also be utilized as drug carriers, enabling targeted and controlled drug release. Their high surface area allows for efficient loading of therapeutic agents, while their biodegradability ensures safer and gradual release within the body. These targeted drug delivery systems enhance the efficacy of treatments and minimizes side effects. Moreover, nanocelluloses can serve as scaffolds in tissue engineering due to their structural integrity and biocompatibility. They provide a three-dimensional framework for cell growth and tissue regeneration, promoting the development of functional and biologically relevant tissues. Nanocellulose-based dressings have shown great promise in wound healing and dressings. Their ability to absorb exudates, maintain a moist environment, and promote cell proliferation and migration accelerates the wound healing process. Herein, the recent advancements pertaining to the catalytic and biomedical applications of nanocelluloses and their composites are deliberated, focusing on important challenges, advantages, limitations, and future prospects.


Subject(s)
Cellulose , Wound Healing , Cellulose/chemistry , Catalysis , Humans , Wound Healing/drug effects , Biocompatible Materials/chemistry , Tissue Engineering/methods , Nanostructures/chemistry , Animals , Drug Delivery Systems , Drug Carriers/chemistry , Bandages
4.
ACS Biomater Sci Eng ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567981

ABSTRACT

The groundbreaking gene-editing mechanism, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), paired with the protein Cas9, has significantly advanced the realms of biology, medicine, and agriculture. Through its precision in modifying genetic sequences, CRISPR holds the potential to alter the trajectory of genetic disorders and accelerate advancements in agriculture. While its therapeutic potential is profound, the technology also invites ethical debates centered on responsible use and equity in access. Parallelly, in the environmental monitoring sphere and sensing in water, especially biosensors have been instrumental in evaluating natural water sources' quality. These biosensors, integrating biological components with detection techniques, have the potential to revolutionize healthcare by providing rapid and minimally invasive diagnostic methods. However, the design and application of these sensors bring forth challenges, especially in ensuring sensitivity, selectivity, and ethical data handling. This article delves into the prospective use of CRISPR-Cas technology for sensing in water, exploring its capabilities in detecting diverse biomarkers, hazardous substances, and varied reactions in water and wastewater systems.

5.
Int J Biol Macromol ; 265(Pt 1): 130899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490375

ABSTRACT

The development of biodegradable active packaging films with hydrophobic characteristics is vital for extending the shelf life of food and reducing the reliance on petroleum-based plastics. In this study, novel hydrophobic cerium-based metal-organic framework (Ce-MOF) nanoparticles were successfully synthesized. The Ce-MOF nanoparticles were then incorporated into the cassava starch matrix at varying concentrations (0.5 %, 1.5 %, 3 %, and 4 % w/w of total solid) to fabricate cassava-based active packaging films via the solution casting technique. The influence of Ce-MOF on the morphology, thermal attributes, and physicochemical properties of the cassava film was subsequently determined through further analyses. Biomedical analysis including antioxidant activity and the cellular morphology evaluation in the presence of the films was also conducted. The results demonstrated that the consistent dispersion of Ce-MOF nanofillers within the cassava matrix led to a significant enhancement in the film's crystallinity, thermal stability, antioxidant activity, biocompatibility, and hydrophobicity. The introduction of Ce-MOF also contributed to the film's reduced water solubility. Considering these outcomes, the developed cassava/Ce-MOF films undoubtedly have significant potential for active food packaging applications.


Subject(s)
Food Packaging , Metal-Organic Frameworks , Food Packaging/methods , Antioxidants , Permeability , Starch/chemistry
6.
Chemosphere ; 353: 141543, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447898

ABSTRACT

Metal-organic frameworks (MOFs) are highly promising adsorbents with notable properties such as elevated adsorption capacities and versatile surface design capabilities. This study introduces two distinct synthesis methods, one lasting 1 h and the other 24 h, for UiO-66 and NH2-UiO-66. While both methods yield structures with comparable crystallinity and morphology, the adsorption performance of the cationic methylene blue dye varies at different pH levels. Despite the 24 h synthesis time being optimal for maximum adsorption in both MOFs, the relative difference in NH2-UiO-66 adsorption percentage at different times suggests reduced dependency on synthesis time for this property. Notably, NH2-UiO-66 exhibits consistent and effective performance across three pH levels, warranting further investigation into its adsorption kinetics and isotherm. The achievement of high adsorption efficiency coupled with a significantly reduced synthesis time underscores the importance of developing simplified synthetic methods, essential for enhancing the practical applicability of MOFs in diverse applications.


Subject(s)
Metal-Organic Frameworks , Methylene Blue , Phthalic Acids , Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
7.
Crit Rev Clin Lab Sci ; : 1-23, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450458

ABSTRACT

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.

8.
Nanoscale Adv ; 6(3): 747-776, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298588

ABSTRACT

There is a significant need for fast, cost-effective, and highly sensitive protein target detection, particularly in the fields of food, environmental monitoring, and healthcare. The integration of high-affinity aptamers with metal-based nanomaterials has played a crucial role in advancing the development of innovative aptasensors tailored for the precise detection of specific proteins. Aptamers offer several advantages over commonly used molecular recognition methods, such as antibodies. Recently, a variety of metal-based aptasensors have been established. These metallic nanomaterials encompass noble metal nanoparticles, metal oxides, metal-carbon nanotubes, carbon quantum dots, graphene-conjugated metallic nanostructures, as well as their nanocomposites, metal-organic frameworks (MOFs), and MXenes. In general, these materials provide enhanced sensitivity through signal amplification and transduction mechanisms. This review primarily focuses on the advancement of aptasensors based on metallic materials for the highly sensitive detection of protein targets, including enzymes and growth factors. Additionally, it sheds light on the challenges encountered in this field and outlines future prospects. We firmly believe that this review will offer a comprehensive overview and fresh insights into metallic nanomaterials-based aptasensors and their capabilities, paving the way for the development of innovative point-of-care (POC) diagnostic devices.

9.
Chemosphere ; 346: 140579, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38303391

ABSTRACT

Molybdenum-doped BiVO4 thin films were uniformly coated on indium-doped tin oxide (ITO) substrates via a facile modified hot spin coating (HSC) technique. The prepared layers were used as photoanode in a photoelectrochemical (PEC) cell. Different percentage of Mo dopant was examined to maximize the photo-current density (J) of the layers. The highest J value (872 ± 8 µA/cm2) was obtained by 5 atomic% of Mo doping. After that, the surface topographies of these samples were changed by varying the initial precursor concentration from 27 to 80 mM. The relation between surface topographies and the PEC activity of Mo-doped BiVO4 thin films was investigated from microscopic point of view by calculating the surface roughness exponent of α, and a mechanism for the PEC activity of Mo-doped BiVO4 photoanodes was proposed accordingly. The sample with a small roughness exponent provided a surface with jagged microscopic fluctuations which may trap the air molecules between the electrolyte and sample surface, hindering the fine atomic interaction for photo-generated electron-hole transition. Therefore, the layer with the highest roughness exponent (2α = 0.48 ± 0.03), which means the smoother microscopic surface and better interfacial contact with the electrolyte, exhibited the best PEC activity.


Subject(s)
Electrons , Molybdenum , Tin Compounds , Software , Electrolytes
10.
ACS Biomater Sci Eng ; 10(3): 1262-1301, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38376103

ABSTRACT

The rapid maturation of smart city ecosystems is intimately linked to advances in the Internet of Things (IoT) and self-powered sensing technologies. Central to this evolution are battery-less sensors that are critical for applications such as continuous health monitoring through blood metabolites and vital signs, the recognition of human activity for behavioral analysis, and the operational enhancement of humanoid robots. The focus on biosensors that exploit the human body for energy-spanning wearable, attachable, and implantable variants has intensified, driven by their broad applicability in areas from underwater exploration to biomedical assays and earthquake monitoring. The heart of these sensors lies in their diverse energy harvesting mechanisms, including biofuel cells, and piezoelectric, triboelectric, and pyroelectric nanogenerators. Notwithstanding the wealth of research, the literature still lacks a holistic review that integrates the design challenges and implementation intricacies of such sensors. Our review seeks to fill this gap by thoroughly evaluating energy harvesting strategies from both material and structural perspectives and assessing their roles in powering an array of sensors for myriad uses. This exploration offers a comprehensive outlook on the state of self-powered sensing devices, tackling the nuances of their deployment and highlighting their potential to revolutionize data gathering in autonomous systems. The intent of this review is to chart the current landscape and future prospects, providing a pivotal reference point for ongoing research and innovation in self-powered wireless sensing technologies.


Subject(s)
Biomedical Technology , Wireless Technology
11.
ACS Biomater Sci Eng ; 10(2): 657-676, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38241520

ABSTRACT

The fusion of MXene-based materials with microfluidics not only presents a dynamic and promising avenue for innovation but also opens up new possibilities across various scientific and technological domains. This Perspective delves into the intricate synergy between MXenes and microfluidics, underscoring their collective potential in material science, sensing, energy storage, and biomedical research. This intersection of disciplines anticipates future advancements in MXene synthesis and functionalization as well as progress in advanced sensing technologies, energy storage solutions, environmental applications, and biomedical breakthroughs. Crucially, the manufacturing and commercialization of MXene-based microfluidic devices, coupled with interdisciplinary collaborations, stand as pivotal considerations. Envisioning a future where MXenes and microfluidics collaboratively shape our technological landscape, addressing intricate challenges and propelling innovation forward necessitates a thoughtful approach. This viewpoint provides a comprehensive assessment of the current state of the field while outlining future prospects for the integration of MXene-based entities and microfluidics.


Subject(s)
Microfluidics , Nitrites , Transition Elements
12.
ACS Omega ; 9(1): 1183-1195, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222665

ABSTRACT

Biocompatible and bioactive carbon-based nanocomposites are ingeniously designed and fabricated with the aim of enhancing drug delivery applicability in breast cancer treatment. Reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) are utilized as nanocarriers for increasing penetrability into cells and the loading capacity. What sets our study apart is the strategic incorporation of the two different complexes of silver (AgL2) and palladium (PdL2) with the carboxamide-based ligand C9H7N3OS (L), which have been synthesized and decorated on nanocarriers alongside doxorubicin (DOX) for stabilizing DOX by π-π interactions and hydrogen bonding. Although DOX is a well-known cancer therapy agent, the efficacy of DOX is hindered owing to drug resistance, poor internalization, and limited site specificity. Aside from stabilizing DOX on nanocarriers, our carbon-based nanocarriers are tailored to act as a precision-guided missile, strategically by adorning with target-sensitive complexes. Based on the literature, carboxamide ligands can connect to overexpressed receptors on cancerous cells and inhibit them from proliferation signaling. Also, the complexes have an antibacterial activity that can control the infection caused by decreasing white blood cells and necrosis of cancerous cells. A high-concentration cytotoxicity assay revealed that decorating PdL2 on a DOX-containing nanocarrier not only increased cytotoxicity to breast cancerous cell lines (MDA-MB-231 and MCF-7) but also revealed higher cell viability on a normal cell line (MCF-10A). The drug release screening results showed that the presence of PdL2 led to 72 h correlate release behavior in acidic and physiological pH profiles, while the AgL2-containing nanocomposite showed an analogue behavior for just 6 h and the release of DOX continued and after about 100 h hit the top.

13.
BioDrugs ; 38(2): 177-203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38252341

ABSTRACT

The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.


Subject(s)
Metabolic Diseases , Oligonucleotides, Antisense , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/genetics , Oligonucleotides, Antisense/therapeutic use , United States
14.
J Mater Chem B ; 12(4): 895-915, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194290

ABSTRACT

MXenes are a class of two-dimensional (2D) materials that have gained significant attention in the field of electronic skins (E-skins). MXene-based composites offer several advantages for E-skins, including high electrical conductivity, mechanical flexibility, transparency, and chemical stability. Their mechanical flexibility allows for conformal integration onto various surfaces, enabling the creation of E-skins that can closely mimic human skin. In addition, their high surface area facilitates enhanced sensitivity and responsiveness to external stimuli, making them ideal for sensing applications. Notably, MXene-based composites can be integrated into E-skins to create sensors that can detect various stimuli, such as temperature, pressure, strain, and humidity. These sensors can be used for a wide range of applications, including health monitoring, robotics, and human-machine interfaces. However, challenges related to scalability, integration, and biocompatibility need to be addressed. One important challenge is achieving long-term stability under harsh conditions such as high humidity. MXenes are susceptible to oxidation, which can degrade their electrical and mechanical properties over time. Another crucial challenge is the scalability of MXene synthesis, as large-scale production methods need to be developed to meet the demand for commercial applications. Notably, the integration of MXenes with other components, such as energy storage devices or flexible electronics, requires further developments to ensure compatibility and optimize overall performance. By addressing issues related to material stability, mechanical flexibility, scalability, sensing performance, and power supply, MXene-based E-skins can develop the fields of healthcare monitoring/diagnostics, prosthetics, motion monitoring, wearable electronics, and human-robot interactions. The integration of MXenes with emerging technologies, such as artificial intelligence or internet of things, can unlock new functionalities and applications for E-skins, ranging from healthcare monitoring to virtual reality interfaces. This review aims to examine the challenges, advantages, and limitations of MXenes and their composites in E-skins, while also exploring the future prospects and potential advancements in this field.


Subject(s)
Artificial Intelligence , Artificial Limbs , Nitrites , Transition Elements , Humans , Electric Conductivity , Electronics
15.
Chemosphere ; 350: 141011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145848

ABSTRACT

Environmental pollution, particularly water pollution caused by organic substances like synthetic dyes, is a pressing global concern. This study focuses on enhancing the adsorption capacity of layered double hydroxides (LDHs) to remove methylene blue (MB) dye from water. The synthesized materials are characterized using techniques like FT-IR, XRD, SEM, TEM, TGA, EDS, BET, BJH, AFM, and UV-Vis DRS. Adsorption experiments show that Zn-Al LDH@ext exhibits a significant adsorption capacity for MB dye compared to pristine LDH. In addition, Zn-Al LDH@ext shows a significant increase in stability, which is attributed to the presence of phenolic compounds in the extract and the interactions between the functional groups of the extract and LDH. The pH and adsorbent dosage optimizations show that pH 7 and 0.7 g of Zn-Al LDH@ext are optimal conditions for efficient MB removal. The study assessed adsorption kinetics through the examination of Langmuir, Freundlich, and Temkin isotherms. Additionally, four kinetic models, namely pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich, were analyzed. The results indicated that the Temkin isotherm (R2 = 0.9927), and pseudo-second-order (R2 = 0.9999) kinetic provided the best fit to the experimental data. This study introduces a novel approach to enhance adsorption efficiency using modified LDHs, contributing to environmentally friendly and cost-effective water treatment methods.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Methylene Blue/chemistry , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Hydroxides/chemistry , Adsorption , Kinetics , Zinc/chemistry , Hydrogen-Ion Concentration
16.
Theranostics ; 13(15): 5183-5206, 2023.
Article in English | MEDLINE | ID: mdl-37908725

ABSTRACT

A diverse array of organic and inorganic materials, including nanomaterials, has been extensively employed in multifunctional biomedical applications. These applications encompass drug/gene delivery, tissue engineering, biosensors, photodynamic and photothermal therapy, and combinatorial sciences. Surface and bulk engineering of these materials, by incorporating biomolecules and aptamers, offers several advantages such as decreased cytotoxicity, improved stability, enhanced selectivity/sensitivity toward specific targets, and expanded multifunctional capabilities. In this comprehensive review, we specifically focus on aptamer-modified engineered materials for diverse biomedical applications. We delve into their mechanisms, advantages, and challenges, and provide an in-depth analysis of relevant literature references. This critical evaluation aims to enhance the scientific community's understanding of this field and inspire new ideas for future research endeavors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Nanostructures , Precision Medicine , Drug Delivery Systems , Nanostructures/therapeutic use
17.
ACS Biomater Sci Eng ; 9(12): 6516-6530, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38019724

ABSTRACT

MXene materials, which consist of nitrides, carbides, or carbonitrides of transition metals, possess a distinctive multilayered structure resulting from the specific etching of the "A" layer from MAX phase precursors. This unique structure allows for tunable properties through intercalation and surface modification. Beyond their structural novelty, MXenes exhibit exceptional thermal conductivity, mechanical resilience, and versatile surface functionalization capabilities, rendering them highly versatile for a wide range of applications. They are particularly renowned for their multifaceted utility and are emerging as outstanding candidates in applications requiring robust thermal conductivity. MXenes, when integrated into textile, fiber, and film forms, have gained increasing relevance in fields where efficient heat management is essential. This work provides a comprehensive exploration of MXene materials, delving into their inherent structure and thermal properties. This Perspective places particular emphasis on their crucial role in efficient heat dissipation, which is vital for the development of wearable heaters and related technologies. Engineered compounds such as MXenes have become indispensable for personal and industrial heating applications, and the advancement of wearable electronic devices necessitates heaters with specific properties, including transparency, mechanical reliability, and adaptability. Recent advancements in emergent thermally conductive MXene compounds are discussed in this study, shedding light on their potential contributions across various domains, including wearable heaters and biosensors for healthcare and environmental monitoring. Furthermore, the versatile nature of MXene materials extends to their application in interfacial solar steam generation, representing a breakthrough approach for solar water desalination. This multifaceted utility underscores the vast potential of MXenes in addressing various pressing challenges.


Subject(s)
Nitrites , Reproducibility of Results
18.
RSC Adv ; 13(49): 34562-34575, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024989

ABSTRACT

Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.

19.
J Mater Chem B ; 11(42): 10072-10087, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37873584

ABSTRACT

Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.


Subject(s)
Drug Delivery Systems , Neoplasms , Humans , Genetic Engineering , Bacteria , Drug Carriers , Neoplasms/drug therapy
20.
Environ Sci Pollut Res Int ; 30(36): 86010-86024, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37395882

ABSTRACT

A grafting of N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA) on natural clay was carried out to obtain an organic-inorganic hybrid clay material that was applied as an adsorbent to the uptake of Reactive Blue 19 (RB-19) and Reactive Green 19 (RG-19) dyes from aqueous wastewaters. This research demonstrates the effect of TMSPDETA contents on amino-functionalized clay materials' hydrophobic/hydrophilic behavior. The resultant material was utilized to uptake reactive dyes in aqueous solutions. The clay@TMSPDETA hybrid material was characterized by isotherm of adsorption and desorption of nitrogen, FTIR, elemental analysis, TGA, pHpzc, total acidity, total basicity groups, and hydrophilic balance. The hybrid samples were more hydrophilic than the pristine clay for ratios from 0.1 up to 0.5 due to adding amino groups to the pristine clay. FTIR spectra suggest that TMSPDETA was grafted onto the clay. The hybrid material presents a surface area 2.17-fold (42.7 m2/g) lower than pristine clay (92.7 m2/g). The total volume of pores of hybrid material was 0.0822 cm3/g, and the pristine clay material was 0.127 cm3/g, corresponding to a diminution of the total pore volume (Vtot) of 1.54 times. The kinetic data followed the pseudo-second-order (PSO) model for RB-19 and RG-19 reactive dyes. The equilibrium data were better fitted to the Liu isotherm model, displaying a Qmax as 178.8 and 361.1 mg g-1 for RB-19 and RG-19, respectively, at 20.0 °C. The main mechanism of interactions of the reactive dyes with the hybrid clay is electrostatic interaction. The clay@TMSPDETA has a very good effect on treating synthetic dye-textile wastewater. The removal percentage of simulated wastewater was up to 97.67% and 88.34% using distilled water and plastic industry wastewater as the solvents, respectively. The clay@TMSPDETA-0.1 could be recycled up to 5 cycles of adsorption and desorption of both dyes, attaining recoveries of 98.42% (RB-19) and 98.32% (RG-19) using 0.1 M HCl + 10% ethanol.


Subject(s)
Wastewater , Water Pollutants, Chemical , Clay , Coloring Agents/analysis , Water/analysis , Kinetics , Textiles , Adsorption , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...