Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(1): e0295495, 2024.
Article in English | MEDLINE | ID: mdl-38165973

ABSTRACT

Cutaneous leishmaniasis (CL) is the most common form of the disease which can cause malignant lesions on the skin. Vaccination for the prevention and treatment of leishmaniasis can be the most effective way to combat this disease. In this study, we designed a novel multi-epitope vaccine against Leishmania major (L. major) using immunoinformatics tools to assess its efficacy in silico. Sequences of Leish-F1 protein (TSA, Leif, and LMSTI1) of L. major were taken from GenBank. The helper T (Th) and cytotoxic T (Tc) epitopes of the protein were predicted. The final multi-epitope consisted of 18 CTL epitopes joined by AAY linker. There were also nine HTL epitopes in the structure of the vaccine construct, joined by GPGPG linker. The profilin adjuvant (the toll-like receptor 11 agonist) was also added into the construct by AAY Linker. There were 613 residues in the structure of the vaccine construct. The multi-epitope vaccine candidate was stable and non-allergic. The data obtained from the binding of final multi-epitope vaccine-TLR11 residues (band lengths and weighted scores) unveiled the ligand and the receptor high score of binding affinity. Moreover, in silico assessment of the vaccine construct cloning achieved its suitable expression in E. coli host. Based on these results, the current multi-epitope vaccine prevents L. major infection in silico, while further confirmatory assessments are required.


Subject(s)
Leishmania major , Viral Vaccines , Leishmania major/genetics , Epitopes, T-Lymphocyte , Escherichia coli , Epitopes, B-Lymphocyte , Computational Biology/methods , Molecular Docking Simulation , Vaccines, Subunit
2.
Curr Gene Ther ; 22(5): 406-416, 2022.
Article in English | MEDLINE | ID: mdl-35382717

ABSTRACT

BACKGROUND: Cancer-related anemia (CRA) negatively influences cancer patients' survival, disease progression, treatment efficacy, and quality of life (QOL). Current treatments such as iron therapy, red cell transfusion, and erythropoietin-stimulating agents (ESAs) may cause severe adverse effects. Therefore, the development of long-lasting and curative therapies is urgently required. OBJECTIVE: In this study, a cell and gene therapy strategy was developed for in vivo delivery of EPO cDNA by way of genetic engineering of human Wharton's jelly mesenchymal stem cells (hWJMSCs) to produce and secrete human EPO protein for extended periods after transplantation into the mice model of CRA. METHODS: To evaluate CRA's treatment in cancer-free and cancerous conditions, first, a recombinant breast cancer cell line 4T1 which expressed herpes simplex virus type 1 thymidine kinase (HSV1-TK) by a lentiviral vector encoding HSV1-TK was developed and injected into mice. After three weeks, all mice developed metastatic breast cancer associated with acute anemia. Then, ganciclovir (GCV) was administered for ten days in half of the mice to clear cancer cells. Meanwhile, another lentiviral vector encoding EPO to transduce hWJMSCs was developed. Following implantation of rhWJMSCs-EPO in the second group of mice, peripheral blood samples were collected once a week for ten weeks from both groups. RESULTS: Analysis of peripheral blood samples showed that plasma EPO, hemoglobin (Hb), and hematocrit (Hct) concentrations significantly increased and remained at therapeutic for >10 weeks in both treatment groups. CONCLUSION: Data indicated that rhWJMSCs-EPO increased the circulating level of EPO, Hb, and Hct in both mouse subject groups and improved the anemia of cancer in both cancer-free and cancerous mice.


Subject(s)
Anemia , Breast Neoplasms , Erythropoietin , Herpesvirus 1, Human , Mesenchymal Stem Cells , Anemia/drug therapy , Animals , Breast Neoplasms/complications , Breast Neoplasms/genetics , Breast Neoplasms/therapy , DNA, Complementary , Disease Models, Animal , Erythropoietin/genetics , Erythropoietin/therapeutic use , Female , Ganciclovir/pharmacology , Hemoglobins/analysis , Hemoglobins/therapeutic use , Humans , Iron , Mice , Quality of Life , Recombinant Proteins , Thymidine Kinase/genetics
3.
Eur J Pharm Sci ; 152: 105423, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32534195

ABSTRACT

Leishmaniasis is one of the major global endemic diseases. Among all the different forms of the disease, cutaneous Leishmaniasis has the highest prevalence worldwide. Treatment with current drugs has not had a significant effect on the improvement of the disease. An attempt to replace an appropriate vaccine that can stimulate host cellular immunity and induce the response of Major histocompatibility complex I (MHCI) and Major histocompatibility complex II (MHCII) against Leishmania is essential. Vaccine production remains a challenge despite the use of different antigens for vaccination against Leishmania major. Hence, we were used the immunoinformatics approach to design a new multi-epitope vaccine against L. major using immunogenic outer membrane proteins. Helper T-lymphocyte (HTL) and Cytotoxic T lymphocyte (CTL) epitopes were predicted and for final confirmation of the selected epitopes, docking analysis, and molecular dynamics simulation was performed. Then, GDGDG linker and profilin adjuvant were added to enhance the immunity of vaccines. The designed vaccine was evaluated in terms of molecular weight, PI, immunogenicity, and allergenicity. Moreover, the secondary and three-dimensional structure of the final construct was identified. In silico cloning approach was carried out to improve expression of the vaccine construct. Finally, molecular docking, followed by molecular dynamic was performed to determine the interaction between multi-epitope vaccine and TLR11. We hope that the designed vaccine can be a good candidate for the development of cutaneous leishmaniasis vaccine. but its effectiveness should be assessed in vivo.


Subject(s)
Epitopes, T-Lymphocyte , Leishmania major , Computational Biology , Epitopes, B-Lymphocyte , Membrane Proteins , Molecular Docking Simulation , Vaccines, Subunit
SELECTION OF CITATIONS
SEARCH DETAIL
...