Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(9): e106597, 2014.
Article in English | MEDLINE | ID: mdl-25215861

ABSTRACT

Though vaccination with live-attenuated SIV provides the greatest protection from progressive disease caused by SIV challenge in rhesus macaques, attenuated HIV presents safety concerns as a vaccine; therefore, live viral vectors carrying HIV immunogens must be considered. We have designed a replication-competent vesicular stomatitis virus (VSV) displaying immunogenic HIV-1 Env trimers and attenuating quantities of the native surface glycoprotein (G). The clade B Env immunogen is an Env-VSV G hybrid (EnvG) in which the transmembrane and cytoplasmic tail regions are derived from G. Relocation of the G gene to the 5'terminus of the genome and insertion of EnvG into the natural G position induced a ∼1 log reduction in surface G, significant growth attenuation compared to wild-type, and incorporation of abundant EnvG. Western blot analysis indicated that ∼75% of incorporated EnvG was a mature proteolytically processed form. Flow cytometry showed that surface EnvG bound various conformationally- and trimer-specific antibodies (Abs), and in-vitro growth assays on CD4+CCR5+ cells demonstrated EnvG functionality. Neither intranasal (IN) or intramuscular (IM) administration in mice induced any observable pathology and all regimens tested generated potent Env-specific ELISA titers of 10(4)-10(5), with an IM VSV prime/IN VSV boost regimen eliciting the highest binding and neutralizing Ab titers. Significant quantities of Env-specific CD4+ T cells were also detected, which were augmented as much as 70-fold by priming with IM electroporated plasmids encoding EnvG and IL-12. These data suggest that our novel vector can achieve balanced safety and immunogenicity and should be considered as an HIV vaccine platform.


Subject(s)
Genetic Vectors/metabolism , HIV-1/metabolism , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Vaccines, Attenuated/immunology , Vesicular stomatitis Indiana virus/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody Formation/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Line , Female , Immunization , Lung/immunology , Lymphocyte Count , Mice, Inbred BALB C , Protein Conformation , Protein Multimerization , Spleen/immunology , Virus Replication , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
2.
FEBS J ; 280(9): 2068-84, 2013 May.
Article in English | MEDLINE | ID: mdl-23480650

ABSTRACT

Chemokines constitute a large family of small proteins that regulate leukocyte trafficking to the site of inflammation by binding to specific cell-surface receptors belonging to the G-protein-coupled receptor (GPCR) superfamily. The interactions between N-terminal (Nt-) peptides of these GPCRs and chemokines have been studied extensively using NMR spectroscopy. However, because of the lower affinities of peptides representing the three extracellular loops (ECLs) of chemokine receptors to their respective chemokine ligands, information concerning these interactions is scarce. To overcome the low affinity of ECL peptides to chemokines, we linked two or three CC chemokine receptor 5 (CCR5) extracellular domains using either biosynthesis in Escherichia coli or chemical synthesis. Using such chimeras, CCR5 binding to RANTES was followed using (1)H-(15)N-HSQC spectra to monitor titration of the chemokine with peptides corresponding to the extracellular surface of the receptor. Nt-CCR5 and ECL2 were found to be the major contributors to CCR5 binding to RANTES, creating an almost closed ring around this protein by interacting with opposing faces of the chemokine. A RANTES positively charged surface involved in Nt-CCR5 binding resembles the positively charged surface in HIV-1 gp120 formed by the C4 and the base of the third variable loop of gp120 (V3). The opposing surface on RANTES, composed primarily of ß2-ß3 hairpin residues, binds ECL2 and was found to be analogous to a surface in the crown of the gp120 V3. The chemical and biosynthetic approaches for linking GPCR surface regions discussed herein should be widely applicable to the investigation of interactions of extracellular segments of chemokine receptors with their respective ligands.


Subject(s)
Chemokine CCL5/chemistry , Receptors, CCR5/chemistry , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Cystine/chemistry , Humans , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Surface Properties
3.
AIDS Res Hum Retroviruses ; 29(6): 971-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23394346

ABSTRACT

A new generation of extremely broad and potent neutralizing antibodies (bNAbs) has been isolated from HIV-infected subjects. This has refocused interest in the sites of vulnerability targeted by these bNAbs and in the potential for designing Envelope (Env) immunogens that display these sites. Standard methods for evaluating HIV-1 vaccine candidates do not enable epitope mapping on the HIV Env spike, the target for NAbs. To meet the need for rapid analysis of Ab specificity, we designed a multiplexed, quantitative mapping assay that can test for serum Ab competition for the binding of an HIV-1 Env gp120 to a panel of bNAbs directed to different sites of vulnerability on the Env that do not compete for one another in the assay. Using serum samples from rabbits immunized with various DNA prime/gp120 protein boost vaccines we were able to detect serum Ab competition for multiple classes of bNAbs in the postimmune samples that were significantly higher than background competition detected in samples obtained prior to vaccination. Importantly, application of this novel assay to our ongoing HIV-1 Env viral vector studies in mice has allowed us to distinguish qualitative differences in the Ab elicited by various regimens that ELISA cannot. Furthermore, pooled immunoglobulin from HIV-infected donors (HIVIg) competes for binding to the bNAb panel whereas a control pool from HIV-negative donors does not, highlighting the utility of this assay for human studies. This novel assay will add value in rational immunogen design and in the detailed, qualitative evaluation of binding and, potentially, neutralizing Abs elicited by natural infections and HIV-1 vaccine candidates.


Subject(s)
Antibody Specificity/immunology , HIV Antibodies/immunology , HIV-1/immunology , Animals , Antibodies, Neutralizing/immunology , Binding, Competitive , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , HIV Envelope Protein gp120/immunology , Humans , Male , Mice/immunology , Mice, Inbred C57BL/immunology , Rabbits/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...