Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 57(6): 2420-8, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-19220016

ABSTRACT

Twenty-three clovane derivatives, nine described here for the first time, bearing substituents on carbon C-2, have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The results showed that compounds 9, 14, 16, and 18 bearing nitrogen atoms in the chain attached at C-2 displayed potent antifungal activity, whereas mercapto derivatives 13, 19, and 22 displayed low activity. The antifungal activity showed a clear structure-activity relationship (SAR) trend, which confirmed the importance of the nature of the C-2 chain on the antifungal activity. On the basis of these observations, the metabolism of compounds 8 and 14 by the fungus B. cinerea, and the metabolism of other clovanes by this fungus, described previously, a pro-drug action mechanism for 2-alkoxyclovane compounds is proposed. Quantitative structure-activity relationship (QSAR) studies were performed to rationalize the results and to suggest further optimization, using a topological sub-structural molecular design (TOPS-MODE) approach. The model displayed good fit and predictive capability, describing 85.5% of the experimental variance, with a standard deviation of 9.502 and yielding high values of cross-validation determination coefficients (q2CV-LOO = 0.784 and q2boot = 0.673). The most significant variables were the spectral moments weighted by bond dipole moment (Dip), hydrophobicity (Hyd), and the combined dipolarity/polarizability Abraham molecular descriptor (Ab-pi2H).


Subject(s)
Botrytis/drug effects , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/pharmacology , Sesquiterpenes/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...