Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-464660

ABSTRACT

An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.

2.
EMBO J ; 24(5): 1068-78, 2005 Mar 09.
Article in English | MEDLINE | ID: mdl-15719013

ABSTRACT

At a certain point in development, axons in the mammalian CNS undergo a profound loss of intrinsic growth capacity, which leads to poor regeneration after injury. Overexpression of Bcl-2 prevents this loss, but the molecular basis of this effect remains unclear. Here, we report that Bcl-2 supports axonal growth by enhancing intracellular Ca(2+) signaling and activating cAMP response element binding protein (CREB) and extracellular-regulated kinase (Erk), which stimulate the regenerative response and neuritogenesis. Expression of Bcl-2 decreases endoplasmic reticulum (ER) Ca(2+) uptake and storage, and thereby leads to a larger intracellular Ca(2+) response induced by Ca(2+) influx or axotomy in Bcl-2-expressing neurons than in control neurons. Bcl-x(L), an antiapoptotic member of the Bcl-2 family that does not affect ER Ca(2+) uptake, supports neuronal survival but cannot activate CREB and Erk or promote axon regeneration. These results suggest a novel role for ER Ca(2+) in the regulation of neuronal response to injury and define a dedicated signaling event through which Bcl-2 supports CNS regeneration.


Subject(s)
Axons/physiology , Calcium Signaling , Nerve Regeneration/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Endoplasmic Reticulum/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Models, Neurological , Mutagenesis , PC12 Cells , Proto-Oncogene Proteins c-bcl-2/genetics , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Retinal Ganglion Cells/physiology , bcl-X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...