Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22280095

ABSTRACT

Wastewater monitoring has shown promise in providing an early warning for new COVID-19 outbreaks, but to date, no approach has been validated to reliably distinguish signal from noise in wastewater data and thereby alert officials to when the data show a need for heightened public health response. We analyzed 62 weeks of data from 19 sites participating in the North Carolina Wastewater Monitoring Network to characterize wastewater metrics before and around the Delta and Omicron surges. We found that, on average, wastewater data identified new outbreaks four to five days before case data (reported based on the earlier of the symptom start date or test collection date). At most sites, correlations between wastewater and case data were similar regardless of how wastewater concentrations were normalized, and correlations were slightly stronger with county-level cases than sewershed-level cases, suggesting that officials may not need to geospatially align case data with sewershed boundaries to gain insights into disease transmission. Wastewater trend lines showed clear differences in the Delta versus Omicron surge trajectories, but no single wastewater metric (detectability, percent change, or flow-population normalized viral concentrations) adequately indicated when these surges started. After iteratively examining different combinations of these three metrics, we developed a simple algorithm that identifies unprecedented signals in the wastewater to help clarify changes in communities COVID-19 burden. Our novel algorithm accurately identified the start of both the Delta and Omicron surges in 84% of sites, potentially providing public health officials with an automated way to flag community-level COVID-19 surges.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21258047

ABSTRACT

The global spread of SARS-CoV-2 has continued to be a serious concern after WHO declared the virus the causative agent of the coronavirus disease 2019 (COVID-19) a global pandemic. Monitoring of wastewater is a useful tool for assessing community prevalence given that fecal shedding of SARS-CoV-2 occurs in high concentrations by infected individuals, regardless of whether they are asymptomatic or symptomatic. Using tools that are part of the wastewater-based epidemiology (WBE) approach, combined with molecular analyses, wastewater monitoring becomes a key piece of information used to assess trends and quantify the scale and dynamics of COVID-19 infection in a specific community, municipality, or area of service. This study investigates a six-month long SARS-CoV-2 RNA quantification in influent wastewater from four municipal wastewater treatment plants (WWTP) serving the Charlotte region of North Carolina (NC) using both RT-qPCR and RT-ddPCR platforms. Influent wastewater was analyzed for the nucleocapsid (N) genes N1 and N2. Both RT-qPCR and RT-ddPCR performed well for detection and quantification of SARS-CoV-2 using the N1 target, while for the N2 target RT-ddPCR was more sensitive. SARS-CoV-2 concentration ranged from 103 to105 copies/L for all four plants. Both RT-qPCR and RT-ddPCR showed a significant moderate to a strong positive correlation between SARS-CoV-2 concentrations and the 7-day rolling average of clinically reported COVID-19 cases using a lag that ranged from 7 to 12 days. A major finding of this study is that despite small differences, both RT-qPCR and RT-ddPCR performed well for tracking the SARS-CoV-2 virus across WWTP of a range of sizes and metropolitan service functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...