Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 110(2): 701-17, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27179997

ABSTRACT

Substrate cover, water quality parameters and assemblages of corals, fishes, sponges, echinoderms, ascidians, molluscs, benthic foraminifera and macroalgae were sampled across a pronounced environmental gradient in the Jakarta Bay-Thousand Islands reef complex. Inshore sites mainly consisted of sand, rubble and turf algae with elevated temperature, dissolved oxygen, pH and chlorophyll concentrations and depauperate assemblages of all taxa. Live coral cover was very low inshore and mainly consisted of sparse massive coral heads and a few encrusting species. Faunal assemblages were more speciose and compositionally distinct mid- and offshore compared to inshore. There were, however, small-scale differences among taxa. Certain midshore sites, for example, housed assemblages resembling those typical of the inshore environment but this differed depending on the taxon. Substrate, water quality and spatial variables together explained from 31% (molluscs) to 72% (foraminifera) of the variation in composition. In general, satellite-derived parameters outperformed locally measured parameters.


Subject(s)
Anthozoa/growth & development , Aquatic Organisms/classification , Bays/chemistry , Environmental Monitoring/methods , Seawater/chemistry , Animals , Anthozoa/drug effects , Aquatic Organisms/drug effects , Aquatic Organisms/growth & development , Biodiversity , Coral Reefs , Echinodermata/growth & development , Ecosystem , Fishes/growth & development , Foraminifera/growth & development , Indonesia , Islands , Mollusca/growth & development , Porifera/growth & development , Seaweed/growth & development , Urbanization , Urochordata/growth & development , Water Quality
2.
Mol Phylogenet Evol ; 56(1): 13-20, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20363344

ABSTRACT

Over the past several decades molecular tools have shown an enormous potential to aid in the clarification of species boundaries in the marine realm, particularly in morphologically simple groups. In this paper we report a case of cryptic speciation in an allegedly cosmopolitan and ecologically important species-the excavating sponge Cliona celata (Clionaidae, Hadromerida). In the Northeast Atlantic and Mediterranean C. celata displays a discontinuous distribution of its putative growth stages (boring, encrusting, and massive) leading us to investigate its specific status. Phylogenetic reconstructions of mitochondrial (COI, Atp8) and nuclear (28S) gene fragments revealed levels of genetic diversity and divergence compatible with interspecific relationships. We therefore demonstrate C. celata as constituting a species complex comprised of at least four morphologically indistinct species, each showing a far more restricted distribution: two species on the Atlantic European coasts and two on the Mediterranean and adjacent Atlantic coasts (Macaronesian islands). Our results provide further confirmation that the different morphotypes do indeed constitute either growth stages or ecologically adapted phenotypes as boring and massive forms were found in two of the four uncovered species. We additionally provide an overview of the cases of cryptic speciation which have been reported to date within the Porifera, and highlight how taxonomic crypsis may confound scientific interpretation and hamper biotechnological advancement. Our work together with previous studies suggests that overconservative systematic traditions but also morphological stasis have led to genetic complexity going undetected and that a DNA-assisted taxonomy may play a key role in uncovering the hidden diversity in this taxonomic group.


Subject(s)
Evolution, Molecular , Genetic Speciation , Phylogeny , Porifera/genetics , Animals , Atlantic Ocean , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Geography , Mediterranean Sea , Porifera/classification , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...