Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epigenetics ; 16(9): 940-954, 2021 09.
Article in English | MEDLINE | ID: mdl-33258708

ABSTRACT

DNA hypermethylation events occur frequently in human cancers, but less is known of the mechanisms leading to their initiation. Retinoblastoma, an intraocular cancer affecting young children, involves bi-allelic inactivation of the RB1 gene (RB-/-). RB1 encodes a tumour suppressing, cell cycle regulating transcription factor (pRB) that binds and regulates the RB1 core and other E2F responsive promoters with epigenetic functions that include recruitment of histone deacetylases (HDACs). Evidence suggests that bi-allelic epigenetic inactivation/hypermethylation of the RB1 core promoter (PrE-/E-), is specific to sporadic retinoblastomas (frequency~10%), whereas heritable RB1 promoter variants (Pr-/+, frequency~1-2%) are not associated with known epigenetic phenomena. We report heritable Pr-/- retinoblastomas with the expected loss of pRB expression, in which hypermethylation consistent with distal boundary displacement (BD) relative to normal peripheral blood DNAs was detected in 4/4 cases. In contrast, proximal BD was identified in 16/16 RB-/- retinoblastomas while multiple boundaries distal of the core promoter was further identified in PrE-/E-and PrE-/E+ retinoblastomas. However, weak or no DNA hypermethylation/BD in peripheral blood DNA was detected in 8/9 Pr-/+ patients, with the exception, a carrier of a microdeletion encompassing several RB1 promoter elements. These findings suggest that loss of boundary control may be a critical step leading to epigenetic inactivation of the RB1 gene and that novel DNA methylation boundaries/profiles identified in the RB1 promoter of Pr-/- retinoblastomas, may be the result of epigenetic phenomena associated with epimutation in conjunction with loss of pRB expression/binding and/or RB1 promoter interactions with boundary control elements.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Child, Preschool , DNA Methylation , Epigenesis, Genetic , Genes, Retinoblastoma , Humans , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Retinoblastoma Binding Proteins , Ubiquitin-Protein Ligases
2.
Acta Neuropathol ; 138(6): 1013-1031, 2019 12.
Article in English | MEDLINE | ID: mdl-31463572

ABSTRACT

MSTO1 encodes a cytosolic mitochondrial fusion protein, misato homolog 1 or MSTO1. While the full genotype-phenotype spectrum remains to be explored, pathogenic variants in MSTO1 have recently been reported in a small number of patients presenting with a phenotype of cerebellar ataxia, congenital muscle involvement with histologic findings ranging from myopathic to dystrophic and pigmentary retinopathy. The proposed underlying pathogenic mechanism of MSTO1-related disease is suggestive of impaired mitochondrial fusion secondary to a loss of function of MSTO1. Disorders of mitochondrial fusion and fission have been shown to also lead to mitochondrial DNA (mtDNA) depletion, linking them to the mtDNA depletion syndromes, a clinically and genetically diverse class of mitochondrial diseases characterized by a reduction of cellular mtDNA content. However, the consequences of pathogenic variants in MSTO1 on mtDNA maintenance remain poorly understood. We present extensive phenotypic and genetic data from 12 independent families, including 15 new patients harbouring a broad array of bi-allelic MSTO1 pathogenic variants, and we provide functional characterization from seven MSTO1-related disease patient fibroblasts. Bi-allelic loss-of-function variants in MSTO1 manifest clinically with a remarkably consistent phenotype of childhood-onset muscular dystrophy, corticospinal tract dysfunction and early-onset non-progressive cerebellar atrophy. MSTO1 protein was not detectable in the cultured fibroblasts of all seven patients evaluated, suggesting that pathogenic variants result in a loss of protein expression and/or affect protein stability. Consistent with impaired mitochondrial fusion, mitochondrial networks in fibroblasts were found to be fragmented. Furthermore, all fibroblasts were found to have depletion of mtDNA ranging from 30 to 70% along with alterations to mtDNA nucleoids. Our data corroborate the role of MSTO1 as a mitochondrial fusion protein and highlight a previously unrecognized link to mtDNA regulation. As impaired mitochondrial fusion is a recognized cause of mtDNA depletion syndromes, this novel link to mtDNA depletion in patient fibroblasts suggests that MSTO1-deficiency should also be considered a mtDNA depletion syndrome. Thus, we provide mechanistic insight into the disease pathogenesis associated with MSTO1 mutations and further define the clinical spectrum and the natural history of MSTO1-related disease.


Subject(s)
Cell Cycle Proteins/genetics , Cerebellar Diseases/genetics , Cytoskeletal Proteins/genetics , DNA, Mitochondrial , Mitochondrial Diseases/genetics , Muscular Dystrophies/genetics , Mutation , Adolescent , Adult , Atrophy , Cells, Cultured , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/pathology , Cerebellar Diseases/physiopathology , Child , DNA Copy Number Variations , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnostic imaging , Mitochondrial Diseases/pathology , Mitochondrial Diseases/physiopathology , Muscles/pathology , Muscular Dystrophies/diagnostic imaging , Muscular Dystrophies/pathology , Muscular Dystrophies/physiopathology , Phenotype , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...