Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res Cogn ; 36: 100299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196922

ABSTRACT

Introduction: Cannabis use impairs cognitive performance in healthy subjects; several studies have shown improved cognitive outcomes in schizophrenic patients using cannabis. The aim of this study was to evaluate the effects of cannabis use on cognitive function in Moroccan patients with schizophrenia who were cannabis users. Method: Two groups were recruited in a Moroccan University Psychiatric Centre. Fifty patients diagnosed with schizophrenia according to the DSM-V who were cannabis users (SZ CANN +) and forty-nine patients diagnosed with schizophrenia according to DSM-V who do not use cannabis (SZ CANN-). Cognitive functioning was assessed using the CogState neuropsychological battery. Results: The results of the study suggest that SZ CANN- patients performed better in the test of psychomotor function, attention and verbal memory. While SZ CANN+ patients performed better in the test of working memory, visual memory and emotional recognition. We found no relationship between SZ CANN+ patients and SZ CANN- patients concerning executive function. Conclusions: Our results suggest that cannabis use may have different effects on neurocognitive functioning. It is associated with disorders of psychomotor function, attention and verbal memory. So, it is associated with an improvement in working memory, visual memory and emotion recognition.

2.
Microbes Infect ; 25(7): 105149, 2023.
Article in English | MEDLINE | ID: mdl-37169244

ABSTRACT

The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.


Subject(s)
Drosophila melanogaster , Gastrointestinal Microbiome , Animals , Drosophila melanogaster/microbiology , Caffeine/pharmacology , Longevity , Sepharose , Sucrose
3.
Croat Med J ; 58(3): 203-213, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28613037

ABSTRACT

AIM: A collaborative exercise with several institutes was organized by the Forensic DNA Service (FDNAS) and the Institute of the Legal Medicine, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic, with the aim to test performance of different laboratories carrying out DNA analysis of relatively old bone samples. METHODS: Eighteen laboratories participating in the collaborative exercise were asked to perform DNA typing of two samples of bone powder. Two bone samples provided by the National Museum and the Institute of Archaelogy in Prague, Czech Republic, came from archeological excavations and were estimated to be approximately 150 and 400 years old. The methods of genetic characterization including autosomal, gonosomal, and mitochondrial markers was selected solely at the discretion of the participating laboratory. RESULTS: Although the participating laboratories used different extraction and amplification strategies, concordant results were obtained from the relatively intact 150 years old bone sample. Typing was more problematic with the analysis of the 400 years old bone sample due to poorer quality. CONCLUSION: The laboratories performing identification DNA analysis of bone and teeth samples should regularly test their ability to correctly perform DNA-based identification on bone samples containing degraded DNA and potential inhibitors and demonstrate that risk of contamination is minimized.


Subject(s)
Bone and Bones/chemistry , DNA/analysis , Czech Republic , DNA Fingerprinting/standards , Forensic Genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...