Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 68(5): 33-46, 2022 May 31.
Article in English | MEDLINE | ID: mdl-36029504

ABSTRACT

Although the production of the secondary metabolite is frequently restricted, methods to regulate and optimize their synthesis are extremely beneficial. The current study proposes to enhance the production of antibiofilm metabolite in Streptomyces cellulosae (S. cellulosae). It was isolated from soil by growing on Gause's media and identified by colony morphology and genomic sequencing of 16S rDNA. Antibacterial and antibiofilm activities of the isolates were screened against a series of pathogenic bacteria by agar plug diffusion and 96 well microtiter plate methods, respectively. Physiological regulation of the bacterial bioactivity against biofilm formation was monitored under different cultural conditions. The isolated Streptomyces sequence analysis of the 16S rDNA was 100% identical to the sequence of S. cellulosae strain NBRC 13027. Physical (temperature and pH) and chemical (carbon, nitrogen, and minerals) culture medium factors have shown variable impacts on the growth and bioactive substances of S. cellulosae. Moreover, results of simple linear regression and correlation suggested that most of the physiological regulations with the highest response (r2= 0.85-0.99; p<0.01) and linearly (r= 0.88-0.99; p<0.01) were correlated between microbial biomass and crude extract. Lastly, under different culture growth conditions, biofilm inhibition was tested against Pseudomonas aeruginosa (P. aeruginosa). The physiological regulation results exhibited that 1 µg/mL of the extract was the most efficient concentration against biofilm formation in P. aeruginosa while 3 µg/mL is an effective bactericidal dose against P. aeruginosa. We concluded that S. cellulosae can produce antibacterial and antibiofilm metabolites. Physiological regulation is considered a powerful tool that can be used for increasing the biosynthesis of the active metabolites and biomass.


Subject(s)
Streptomyces , Anti-Bacterial Agents , Biofilms , DNA, Ribosomal , Microbial Sensitivity Tests , Pseudomonas aeruginosa
2.
Pol J Microbiol ; 71(1): 115-121, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35635174

ABSTRACT

In this manuscript, we report the proteins macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) that are expressed in different times of pregnancy in mice infected with Chlamydia abortus. Enzootic abortion of ewes (EAE) by C. abortus, an obligate intracellular pathogen, is a critical zoonotic disease-causing significant economic loss to livestock farming globally. This study was carried out for the detection and characterization of macrophage infectivity potentiator (mip, CAB080), major outer membrane protein (momp, CAB048), and polymorphic outer membrane protein (pmp18D, CAB776) using RT-qPCR. These proteins are believed to be expressed as virulence factors in C. abortus isolated from aborted ewes. BALB/c mice (pregnant and nonpregnant) were used as an animal model to be injected intraperitoneally with C. abortus culture in Vero cells since the endometrial lymphoid tissues of these animals resembles that of ewes. Also, the short duration of pregnancy in mice makes them a suitable animal model for obstetric studies. Tissue samples were taken from the mice after 10, 15, and 20 days of pregnancy to compare the expression of the genes mip, pmp18D, and ompA. Transcription level was quantified using RT-qPCR, the GAPDH transcription quantification, as a normalization signal. Abortion occurred in pregnant mice, and apparent differences between the transcriptional levels of the mip, pmp18D, and ompA genes in the samples taken during different time intervals of pregnancy were not observed (p > 0.05). The result indicated that the three bacterial genes, mip, pmp18D, and ompA, play a role as virulence factors in abortion and are differentially expressed in pregnant and nonpregnant animals. Inactivation of the genes is suggested to confirm the hypothesis.


Subject(s)
Membrane Proteins , Virulence Factors , Animals , Chlamydia , Chlorocebus aethiops , Female , Mice , Mice, Inbred BALB C , Pregnancy , Sheep , Vero Cells
3.
Pol J Microbiol ; 69: 1-7, 2020.
Article in English | MEDLINE | ID: mdl-32108450

ABSTRACT

Abortion in small ruminants is a significant problem in Iraq and causes severe economic losses in sheep farms. Chlamydia abortus causes enzootic abortion in ewes and is associated with reproductive problems in sheep in Sulaimani province - Northern Iraq. During a lambing season in 2017, abortion was widespread among several sheep flocks in different regions of Sulaimani (Kalar, Said Sadiq, and Chamchamal), and C. abortus was one of the causes. Accordingly, we carried out this study to isolate and identify C. abortus in aborted ewes in these regions. We collected 30 samples of aborted fetuses from five herds in which abortions had been observed. The pathogen isolation was done by inoculation into embryonated chicken eggs and conventional PCR was used to identify C. abortus in clinical specimens. C. abortus was identified in one of the 30 aborted fetuses (3.33%) from the Kalar district, and all the remaining 29 samples (96.66%) were found positive to Brucella abortus. The gene ompA encoding the outer membrane protein of C. abortus was sequenced and got the accession number MK643153 in NCBI GenBank. The sequence was named C. abortus strain Sul/2017. Our isolate showed 99.79% homology with Sul/014 (accession No. KY399850) and differed from the latter by two amino acid substitutions at E115K and K259N. The topology of the phylogenetic tree based on the ompA gene showed that the isolate belongs to C. abortus and has a common ancestor with isolates of sheep in Iraq and Tunisia with accession numbers KY399850 and HQ62243, respectively.Abortion in small ruminants is a significant problem in Iraq and causes severe economic losses in sheep farms. Chlamydia abortus causes enzootic abortion in ewes and is associated with reproductive problems in sheep in Sulaimani province ­ Northern Iraq. During a lambing season in 2017, abortion was widespread among several sheep flocks in different regions of Sulaimani (Kalar, Said Sadiq, and Chamchamal), and C. abortus was one of the causes. Accordingly, we carried out this study to isolate and identify C. abortus in aborted ewes in these regions. We collected 30 samples of aborted fetuses from five herds in which abortions had been observed. The pathogen isolation was done by inoculation into embryonated chicken eggs and conventional PCR was used to identify C. abortus in clinical specimens. C. abortus was identified in one of the 30 aborted fetuses (3.33%) from the Kalar district, and all the remaining 29 samples (96.66%) were found positive to Brucella abortus. The gene ompA encoding the outer membrane protein of C. abortus was sequenced and got the accession number MK643153 in NCBI GenBank. The sequence was named C. abortus strain Sul/2017. Our isolate showed 99.79% homology with Sul/014 (accession No. KY399850) and differed from the latter by two amino acid substitutions at E115K and K259N. The topology of the phylogenetic tree based on the ompA gene showed that the isolate belongs to C. abortus and has a common ancestor with isolates of sheep in Iraq and Tunisia with accession numbers KY399850 and HQ62243, respectively.


Subject(s)
Aborted Fetus/microbiology , Chlamydia Infections/veterinary , Chlamydia/genetics , Chlamydia/isolation & purification , Sheep/microbiology , Amino Acid Substitution , Animals , Bacterial Outer Membrane Proteins/genetics , Chlamydia Infections/microbiology , Female , Iraq , Phylogeny , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...