Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 44(D1): D330-5, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26635392

ABSTRACT

The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue.


Subject(s)
Archaeal Proteins/physiology , Bacterial Proteins/physiology , Databases, Protein , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Molecular Sequence Annotation
3.
Nucleic Acids Res ; 39(Database issue): D11-4, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097892

ABSTRACT

COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.


Subject(s)
Databases, Genetic , Genome, Archaeal , Genome, Bacterial , Molecular Sequence Annotation , Databases, Protein , Genomics
4.
Mol Syst Biol ; 2: 66, 2006.
Article in English | MEDLINE | ID: mdl-17130868

ABSTRACT

Network models are a fundamental tool for the visualization and analysis of molecular interactions occurring in biological systems. While broadly illuminating the molecular machinery of the cell, graphical representations of protein interaction networks mask complex patterns of interaction that depend on temporal, spatial, or condition-specific contexts. In this paper, we introduce a novel graph construct called a biological context network that explicitly captures these changing patterns of interaction from one biological context to another. We consider known gene ontology biological process and cellular component annotations as a proxy for context, and show that aggregating small process-specific protein interaction sub-networks leads to the emergence of observed scale-free properties. The biological context model also provides the basis for characterizing proteins in terms of several context-specific measures, including 'interactive promiscuity,' which identifies proteins whose interacting partners vary from one context to another. We show that such context-sensitive measures are significantly better predictors of knockout lethality than node degree, reaching better than 70% accuracy among the top scoring proteins.


Subject(s)
Protein Interaction Mapping , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism
5.
J Comput Biol ; 13(10): 1659-72, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17238837

ABSTRACT

Multiplex polymerase chain reaction (PCR) is an extension of the standard PCR protocol in which primers for multiple DNA loci are pooled together within a single reaction tube, enabling simultaneous sequence amplification, thus reducing costs and saving time. Potential cost saving and throughput improvements directly depend on the level of multiplexing achieved. Designing reliable and highly multiplexed assays is challenging because primers that are pooled together in a single reaction tube may cross-hybridize, though this can be addressed either by modifying the choice of primers for one or more amplicons, or by altering the way in which DNA loci are partitioned into separate reaction tubes. In this paper, we introduce a new graph formalism called a multi-node graph, and describe its application to the analysis of multiplex PCR scalability. We show, using random multi-node graphs that the scalability of multiplex PCR is constrained by a phase transition, suggesting fundamental limits on efforts to improve the cost-effectiveness and throughput of standard multiplex PCR assays. In particular, we show that when the multiplexing level of the reaction tubes is roughly theta(log (sn)) (where s is the number of primer pair candidates per locus and n is the number of loci to be amplified), then with very high probability we can 'cover' all loci with a valid assignment to one of the tubes in the assay. However, when the multiplexing level of the tube exceeds these bounds, there is no possible cover and moreover the size of the cover drops dramatically. Simulations using a simple greedy algorithm on real DNA data also confirm the presence of this phase transition. Our theoretical results suggest, however, that the resulting phase transition is a fundamental characteristic of the problem, implying intrinsic limits on the development of future assay design algorithms.


Subject(s)
Algorithms , Computer Simulation , Polymerase Chain Reaction/methods , DNA Primers , Nucleic Acid Hybridization
6.
BMC Genomics ; 6: 102, 2005 Jul 25.
Article in English | MEDLINE | ID: mdl-16042802

ABSTRACT

BACKGROUND: Multiplex PCR is a key technology for detecting infectious microorganisms, whole-genome sequencing, forensic analysis, and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays requires the consideration of multiple competing objectives and physical constraints, and extensive computational analysis must be performed in order to identify the possible formation of primer-dimers that can negatively impact product yield. RESULTS: This paper examines the computational design limits of multiplex PCR in the context of SNP genotyping and examines tradeoffs associated with several key design factors including multiplexing level (the number of primer pairs per tube), coverage (the % of SNP whose associated primers are actually assigned to one of several available tube), and tube-size uniformity. We also examine how design performance depends on the total number of available SNPs from which to choose, and primer stringency criterial. We show that finding high-multiplexing/high-coverage designs is subject to a computational phase transition, becoming dramatically more difficult when the probability of primer pair interaction exceeds a critical threshold. The precise location of this critical transition point depends on the number of available SNPs and the level of multiplexing required. We also demonstrate how coverage performance is impacted by the number of available snps, primer selection criteria, and target multiplexing levels. CONCLUSION: The presence of a phase transition suggests limits to scaling Multiplex PCR performance for high-throughput genomics applications. Achieving broad SNP coverage rapidly transitions from being very easy to very hard as the target multiplexing level (# of primer pairs per tube) increases. The onset of a phase transition can be "delayed" by having a larger pool of SNPs, or loosening primer selection constraints so as to increase the number of candidate primer pairs per SNP, though the latter may produce other adverse effects. The resulting design performance tradeoffs define a benchmark that can serve as the basis for comparing competing multiplex PCR design optimization algorithms and can also provide general rules-of-thumb to experimentalists seeking to understand the performance limits of standard multiplex PCR.


Subject(s)
Genotype , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction/methods , Algorithms , Cluster Analysis , DNA Primers/chemistry , DNA Primers/genetics , Humans , Models, Genetic , Models, Statistical , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Software
7.
Nucleic Acids Res ; 33(Web Server issue): W544-7, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15980531

ABSTRACT

We have developed a web-enabled system called MuPlex that aids researchers in the design of multiplex PCR assays. Multiplex PCR is a key technology for an endless list of applications, including detecting infectious microorganisms, whole-genome sequencing and closure, forensic analysis and for enabling flexible yet low-cost genotyping. However, the design of a multiplex PCR assays is computationally challenging because it involves tradeoffs among competing objectives, and extensive computational analysis is required in order to screen out primer-pair cross interactions. With MuPlex, users specify a set of DNA sequences along with primer selection criteria, interaction parameters and the target multiplexing level. MuPlex designs a set of multiplex PCR assays designed to cover as many of the input sequences as possible. MuPlex provides multiple solution alternatives that reveal tradeoffs among competing objectives. MuPlex is uniquely designed for large-scale multiplex PCR assay design in an automated high-throughput environment, where high coverage of potentially thousands of single nucleotide polymorphisms is required. The server is available at http://genomics14.bu.edu:8080/MuPlex/MuPlex.html.


Subject(s)
DNA Primers , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Software , Algorithms , Humans , Internet , Sequence Analysis, DNA , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...