Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res ; 78(5): 1253-1265, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29301792

ABSTRACT

Stromal cells residing in the tumor microenvironment contribute to the development of therapy resistance. Here we show that chemotherapy-educated mesenchymal stem cells (MSC) promote therapy resistance via cross-talk with tumor-initiating cells (TIC), a resistant tumor cell subset that initiates tumorigenesis and metastasis. In response to gemcitabine chemotherapy, MSCs colonized pancreatic adenocarcinomas in large numbers and resided in close proximity to TICs. Furthermore, gemcitabine-educated MSCs promoted the enrichment of TICs in vitro and enhance tumor growth in vivo These effects were dependent on the secretion of CXCL10 by gemcitabine-educated MSCs and subsequent activation of the CXCL10-CXCR3 axis in TICs. In an orthotopic pancreatic tumor model, targeting TICs using nanovesicles (called nanoghosts) derived from MSC membranes and loaded with a CXCR3 antagonist enhanced therapy outcome and delayed tumor regrowth when administered in combination with gemcitabine. Overall, our results establish a mechanism through which MSCs promote chemoresistance, and propose a novel drug delivery system to target TICs and overcome this resistance.Significance: These results establish a mechanism by which mesenchyme stem cells in the tumor microenvironment promote chemoresistance, and they propose a novel drug delivery system to overcome this challenge. Cancer Res; 78(5); 1253-65. ©2018 AACR.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Transformation, Neoplastic/pathology , Deoxycytidine/analogs & derivatives , Lung Neoplasms/pathology , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Communication , Cell Proliferation , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Deoxycytidine/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, SCID , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Tumor Cells, Cultured , Tumor Microenvironment , Xenograft Model Antitumor Assays , Gemcitabine , Pancreatic Neoplasms
2.
Cell Rep ; 19(4): 774-784, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28445728

ABSTRACT

Surgery remains the most successful curative treatment for cancer. However, some patients with early-stage disease who undergo surgery eventually succumb to distant metastasis. Here, we show that in response to surgery, the lungs become more vulnerable to metastasis due to extracellular matrix remodeling. Mice that undergo surgery or that are preconditioned with plasma from donor mice that underwent surgery succumb to lung metastases earlier than controls. Increased lysyl oxidase (LOX) activity and expression, fibrillary collagen crosslinking, and focal adhesion signaling contribute to this effect, with the hypoxic surgical site serving as the source of LOX. Furthermore, the lungs of recipient mice injected with plasma from post-surgical colorectal cancer patients are more prone to metastatic seeding than mice injected with baseline plasma. Downregulation of LOX activity or levels reduces lung metastasis after surgery and increases survival, highlighting the potential of LOX inhibition in reducing the risk of metastasis following surgery.


Subject(s)
Colorectal Neoplasms/surgery , Lung Neoplasms/secondary , Protein-Lysine 6-Oxidase/metabolism , Animals , Antibodies/immunology , Antibodies/therapeutic use , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Cell Line, Tumor , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Focal Adhesions/metabolism , Humans , Kaplan-Meier Estimate , Lung/pathology , Lung Neoplasms/pathology , Lung Neoplasms/prevention & control , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Fluorescence , Protein-Lysine 6-Oxidase/blood , Protein-Lysine 6-Oxidase/immunology , Risk , Signal Transduction , Transplantation, Homologous
3.
Cell Rep ; 17(5): 1344-1356, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27783948

ABSTRACT

While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice.


Subject(s)
Lymphangiogenesis , Macrophages/pathology , Paclitaxel/pharmacology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Cathepsins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Female , Glucuronidase/metabolism , Humans , Lymphangiogenesis/drug effects , Lymphatic Vessels/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred BALB C , Neoplasm Metastasis , Phenotype , Up-Regulation/drug effects , Vascular Endothelial Growth Factor C/blood , Vascular Endothelial Growth Factor C/metabolism
4.
Oncotarget ; 6(29): 27537-54, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26348470

ABSTRACT

A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.


Subject(s)
Colonic Neoplasms/drug therapy , Dequalinium/analogs & derivatives , Dequalinium/therapeutic use , Macrophages/drug effects , Neoplasm Metastasis , Animals , Antineoplastic Agents/therapeutic use , Cell Line , Cell Line, Tumor , Colonic Neoplasms/pathology , Culture Media, Conditioned/chemistry , Female , HCT116 Cells , HT29 Cells , Human Umbilical Vein Endothelial Cells , Humans , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, SCID , Neoplasm Transplantation , Neovascularization, Pathologic
SELECTION OF CITATIONS
SEARCH DETAIL