Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(44): 41458-41471, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31613085

ABSTRACT

A series of highly thermally and hydrolytically stable porous solids with intriguing properties of zirconium- and hafnium-based metal-organic frameworks (MOFs) [Dresden University of Technology (DUT) series] was synthesized. The DUT MOFs were found to be effective catalysts for both epoxide-CO2 cycloaddition reactions and the catalytic transfer hydrogenation (CTH) of ethyl levulinate (EL). In particular, 12-connected DUT-52(Zr) showed higher catalytic activity than eight- and six-connected catalysts in the synthesis of cyclic carbonates as well as in the production of γ-valerolactone (GVL). The secondary building unit connectivity, coexistence of a moderate number of acidic and basic sites, Brunauer-Emmett-Teller surface area, and combined effects of the pores of the MOFs seem to influence the catalytic activity. The reaction mechanism for the DUT-52(Zr)-mediated cycloaddition reaction of CO2 and the CTH reactions were investigated in detail by using periodic density functional theory calculations. To the best of our knowledge, this is the first detailed computational study for the formation of GVL from EL by using MOF as the catalyst. In addition, grand canonical Monte Carlo simulations predicted the strong interaction of CO2 molecules with the DUT-52(Zr) framework. Remarkably, the DUT-series catalysts possess extraordinary tolerance toward water. Further, DUT-52(Zr) is recyclable and is an efficient catalyst for cycloaddition and CTH reactions for at least five uses without obvious reductions in the activity or structural integrity.

2.
Inorg Chem ; 58(17): 11389-11403, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31433625

ABSTRACT

We synthesized two new adenine-based Zn(II)/Cd(II) metal-organic frameworks (MOFs), namely, [Zn2(H2O)(stdb)2(5H-Ade)(9H-Ade)2]n (PNU-21) and [Cd2(Hstdb)(stdb)(8H-Ade)(Ade)]n (PNU-22), containing auxiliary dicarboxylate ligand (stdb = 4,4'-stilbenedicarboxylate). Both MOFs were characterized by multiple analytical techniques such as single-crystal X-ray diffraction (SXRD), powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, as well as temperature program desorption and Brunauer-Emmett-Teller measurements. Both MOFs were structurally robust and possessed unsaturated Lewis acidic metal centers [Zn(II) and Cd(II)] and free basic N atoms of adenine molecules. They were used as heterogeneous catalysts for the fixation of CO2 into five-membered cyclic carbonates. Significant conversion of epichlorohydrin (ECH) was attained at a low CO2 pressure (0.4 MPa) and moderate catalyst (0.6 mol %)/cocatalyst (0.3 mol %) amounts, with over 99% selectivity toward the ECH carbonate. They showed comparable or even higher catalytic activity than other previously reported MOFs. Because of high thermal stability and robust architecture of PNU-21/PNU-22, both catalysts could be reused with simple separation up to five successive cycles without any considerable loss of their catalytic activity. Densely populated acidic and basic sites in both Zn(II)/Cd(II) MOFs facilitated the conversion of ECH to ECH carbonate in high yields. The reaction mechanism of the cycloaddition reaction between ECH and CO2 is described by possible intermediates, transition states, and pathways, from the density functional theory calculation in correlation with the SXRD structure of PNU-21.

3.
ChemSusChem ; 12(5): 1033-1042, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30610753

ABSTRACT

A facile approach for modifying the UiO-66-NH2 metal-organic framework by incorporating imidazolium-based ionic liquids (ILs) to form bifunctional heterogeneous catalysts for the cycloaddition of epoxides to CO2 is reported. Methylimidazolium- and methylbenzimidazolium-based IL units (ILA and ILB, respectively) were introduced into the pore walls of the UiO-66-NH2 framework through a condensation reaction to generate ILA@U6N and ILB@U6N catalysts, respectively. The resultant heterogeneous catalysts, especially ILA@U6N, exhibited excellent CO2 adsorption capability, which makes them effective for cycloaddition reactions producing cyclic carbonates under mild reaction conditions in the absence of any cocatalyst or solvent. The significantly enhanced activity of ILA@U6N is attributed to the synergism between the coordinately unsaturated Lewis acidic Zr4+ centers and Br- ions in the bifunctional heterogeneous catalysts. The size effect of the ILs on coupling between the epoxide and CO2 was also studied for ILA@U6N and ILB@U6N. A periodic DFT study was performed to provide evidence of possible intermediates, transition states, and pathways, as well as to gain deeper insight into the mechanism of the ILA@U6N-catalyzed cycloaddition reaction between epichlorohydrin and CO2 .

4.
Langmuir ; 34(34): 10081-10091, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30053782

ABSTRACT

Nanoemulsions (NEs) comprising ionic liquids (ILs); ethanolammonium formate (HO-EOAF), proliniumisopropylester dioctylsulfosuccinate ([ProC3][AOT]), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, ([Bmim][NTf2]) as insoluble hydrophilic, surface active, and hydrophobic components have been constructed. This novel class of colloidal formulations exhibited several contrasting properties vis-à-vis conventional water-in-oil or water-in-ionic liquid or nonaqueous NEs such as (i) spontaneous formation, (ii) thermodynamic stability and isotropic nature, (iii) decrease of droplet size with increase in polar medium concentration, and (iv) high thermal and kinetic stability. Mechanisms and characteristics for such anomalies have been investigated by physical, spectroscopic, and imaging techniques. NEs have been demonstrated as versatile recyclable nanoreactors for user-friendly synthesis of materials such as metal-organic frameworks/light harvesting hybrid systems. We anticipate that this development will lead to the construction of several other need-based "all ionic-liquid nanoemulsions" in view of the flexibility provided by the tailoring nature of ILs.

5.
Dalton Trans ; 47(3): 898-908, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29256566

ABSTRACT

Dye capture and separation through coordination polymers (CPs) has been a promising research field in recent times due to the toxic and nondegradable nature of organic dyes released into the environment from various industries as well as the reusability of CPs for the said purpose. Here, we report the synthesis and characterization of two mixed ligand CPs {[Zn2(HBTC)2(L)(H2O)2](C2H5OH)3}n (CP1) and {[Zn5(BTC)2(L)3(OH)4(H2O)2](H2O)4(CH3OH)11}n (CP2) (where H3BTC = 1,3,5-benzene tricarboxylic acid and L = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) by the stoichiometric variation of the precursors. The crystal structure analysis revealed that CP1 is a 2D network composed of a [Zn2(HBTC)2(H2O)2]n motif linked via terminal nitrogen atoms of L and CP2 is a 3D framework in which symmetrically disposed two-dimensional {[Zn5(BTC)2(L)3(OH)4(H2O)2]}n sheets composed of pentanuclear [Zn5(RCO2)6(µ3-OH)2(µ2-OH)2(H2O)2] SBUs are pillared by L ligands. Adsorption and separation of cationic dyes by CP1 and the solid-state fluorescence properties of both CPs have been investigated. Cationic dyes (RhB, MB, and MV) can be effectively adsorbed by CP1 from their aqueous solution (61%, 90%, and 97%, respectively) while the anionic dye methyl orange (MO) remains uncaptured. Dye desorption studies and CP1 as a column chromatographic filler for the separation of cationic dyes in water have also been demonstrated.

6.
Inorg Chem ; 56(18): 10939-10949, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28849927

ABSTRACT

Zn(II)/Cd(II)-based dual ligand Luminescent Metal-Organic Frameworks (LMOFs) {[M(ATA)(L)]}n·xH2O (1) and (2) were synthesized by versatile synthetic routes, viz., diffusion of precursor solutions, conventional reflux, and green mechanochemical (grinding) reactions from bipyridyl-based Schiff base, (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and amino functionalized 2-aminoterephthalic acid (H2ATA) as linkers. Chemical and thermal stability, phase purity, and characterization of both LMOFs were established by various analytical methods. SXRD analysis revealed the 3D framework is composed of two-dimensional [M(ATA)]n nets doubly pillared by L through the terminal nitrogen atom. Selective and sensitive detection of chromate anions (CrO42-/Cr2O72-) and Fe3+/Pd2+ cations in the aqueous phase by fluorescent quenching of the LMOFs 1 and 2 has been established. Competitive experiments in the presence of interfering anions/cations with 1 and 2 revealed no major change in the quenching efficiency. The observed limits of detection (LOD) values by 1 for CrO42-/Cr2O72- were 0.25 µM (48 ppb)/0.43 µM (126 ppb) and for Fe3+/Pd2+ were 3.76 µM (0.61 ppm)/0.20 µM (35 ppb), whereas LOD values by 2 were 0.18 µM (35 ppb)/0.19 µM (55 ppb) and 1.77 µM (0.29 ppm)/0.10 µM (18 ppb), respectively. Simple fluorescent-based test paper strips have been developed for reliable and visual detection of the mentioned analytes in practical applications. The present investigation clearly demonstrates selective detection of CrO42-/Cr2O72- and Fe3+/Pd2+ in aqueous media, and the probable mechanism for the quenching phenomena based on structural aspects has also been discussed.

7.
Dalton Trans ; 46(11): 3623-3630, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28247897

ABSTRACT

Two cadmium(ii) coordination polymers (CPs) of compositions {[Cd(H2O)4(4-BPDB)][BPDC]}n (CP1) and {[Cd(H2O)(BrIP)(BTTMB)]·4MeOH}n (CP2) have been synthesized by solvothermal methods and characterized by several analytical methods including SXRD (Single Crystal X-ray Diffraction). The structure of CP1 can be described as a 1D cationic chain, {[Cd(H2O)4(4-BPDB)]2+}n and discrete BPDC counter anions. The structure of CP2 revealed an undulated 2D sql net comprising Cd2+ nodes bridged by the ditopic N-donor, BTTMB and dicarboxylate BrIP involved in µ2-η1η1η1η1 coordination. Supramolecular interactions in both CPs generate 3D hydrogen bonded architectures. The solid state fluorescence properties of these d10 metal ion containing CPs have been investigated. Fluorescence emission of CP1 suspended in acetonitrile is observed to be selectively quenched by acetone (LOD = 0.15 mM) over other common laboratory solvents.

8.
Inorg Chem ; 56(5): 2627-2638, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28207248

ABSTRACT

Isostructural Zn(II)/Cd(II) mixed ligand coordination polymers (CPs) {[M(IPA)(L)]}n (CP1 and CP2) built from isophthalic acid (H2IPA) and 3-pyridylcarboxaldehyde nicotinoylhydrazone (L) were prepared using versatile synthetic routes: viz., diffusion of precursor solutions, conventional reflux methods, and green mechanochemical (grinding) reactions. Both robust CPs synthesized by different routes were characterized by various analytical methods, and their thermal and chemical stability as well as the phase purity was established. Crystallographic studies revealed that CP1 and CP2 are isostructural frameworks and feature a double-lined two-dimensional network composed of Zn2+/Cd2+ nodes connected through IPA and pillared by the Schiff base ligand L with a double-walled edge. The photoluminescent (PL) properties of CP1 and CP2 have been exploited as dual detection fluorosensors for hexavalent chromate anions (CrO42-/Cr2O72-) and 2,4,6-trinitrophenol (TNP) because it was observed that the emission intensity of aqueous suspensions of CPs selectively quenches by chromate anions or TNP among large pools of different anions or nitro compounds, respectively. Competitive experiments in the presence of interfering anions/other nitro compounds also revealed no major effect in the quenching efficiency, suggesting the selective detection of hexavalent chromate anions as well as TNP by the LCPs. The limits of detection by CP1 for CrO42-/Cr2O72- and TNP are 4 ppm/4 ppm and 28 ppb, respectively, whereas the limits of detection by CP2 for the same analytes are 1 ppm/1 ppm and 14 ppb, respectively. A probable mechanism for the quenching phenomena is also discussed.

9.
Dalton Trans ; 45(18): 7881-92, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27067118

ABSTRACT

Two dimensional metal organic frameworks (MOFs) [Cd(5-BrIP)(TIB)]n () and [Ni2(5-BrIP)2(TIB)2]n (), involving the aromatic polycarboxylate ligand 5-bromo isophthalic acid (H2BrIP), flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl)benzene (TIB) and Cd(ii)/Ni(ii) metal nodes have been synthesized by different methods. These compounds were characterized by various analytical methods, and variable temperature X-ray diffraction data showed thermal stability of both MOFs up to 350 °C. Phase purity as well as water stability of the MOFs were established by powder X-ray diffraction, and the structural diversity of the compounds were investigated by single-crystal X-ray diffraction. Both the MOFs are mixed ligand 2D nets, and the topology of the network can be described as a binodal 3,5-c connected net with 3,5L2 topology having the point symbol {4(2)·6(7)·8}{4(2)·6}. Sensing of picric acid [2,4,6-trinitrophenol, TNP] by luminescence quenching among a large range of nitroanalytes in aqueous phase by the Cd(ii) luminescent MOF (LMOF) were been investigated. Structural studies on 1 : 1 co-crystals () of TIB and TNP were carried out. The selective and sensitive fluorescence quenching response of towards electron-deficient TNP over other nitro analytes in aqueous phase was demonstrated by fluorescence quenching titration. Concomitant occurrence of electron transfer/energy transfer processes and electrostatic interaction favours the selective sensing of TNP. A Cd(ii) LMOF ()-coated paper strip that we developed demonstrated fast and selective response to TNP, by the complete quenching of the blue fluorescence upon excitation of the paper strip at 365 nm radiation in its presence.

10.
Article in English | MEDLINE | ID: mdl-24441129

ABSTRACT

Co-crystals comprising the active pharmaceutical ingredient 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, C12H10N4, and the chiral co-formers (+)-, (-)- and (rac)-camphoric acid (cam), C10H16O4, have been synthesized. Two different stoichiometries of the API and co-former are obtained, namely 1:1 and 3:2. Crystallization experiments suggest that the 3:2 co-crystal is kinetically favoured over the 1:1 co-crystal. Single-crystal X-ray diffraction analysis of the co-crystals reveals N-H...O hydrogen bonding as the primary driving force for crystallization of the supramolecular structures. The 1:1 co-crystal contains undulating hydrogen-bonded ribbons, in which the chiral cam molecules impart a helical twist. The 3:2 co-crystal contains discrete Z-shaped motifs comprising three molecules of the API and two molecules of cam. The 3:2 co-crystals with (+)-cam, (-)-cam (space group P21) and (rac)-cam (space group P21/n) are isostructural. The enantiomeric co-crystals contain pseudo-symmetry consistent with space group P21/n, and the co-crystal with (rac)-cam represents a solid solution between the co-crystals containing (+)-cam and (-)-cam.


Subject(s)
Cyclopentanes/chemistry , Dicarboxylic Acids/chemistry , Hydrazines/chemistry , Models, Molecular , Pyridines/chemistry , Schiff Bases/chemistry , Circular Dichroism , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Molecular Conformation , Powder Diffraction , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...