Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 28(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37836781

ABSTRACT

This article presents the results of studies investigating the effect of red kale (Brassica oleracea L. ssp. acephala L. var. sabellica) extract on cancer cells (HT-29). The cytotoxicity of the red kale extract was assessed using MTT and LDH assays, while qRT-PCR was employed to analyze the expression of genes associated with the p53 signaling pathway to elucidate the effect of the extract on cancer cells. Furthermore, HPLC-ESI-QTOF-MS/MS was applied to identify bioactive compounds present in red kale. The obtained results indicated that red kale extract reduced the viability and suppressed the proliferation of HT-29 cells (the IC50 value of 60.8 µg/mL). Additionally, mRNA expression analysis revealed significant upregulation of several genes, i.e., casp9, mapk10, mapk11, fas, kat2 b, and ubd, suggesting the induction of cell apoptosis through the caspase-dependent pathway. Interestingly, the study revealed a decrease in the expression of genes including cdk2 and cdk4 encoding cell cycle-related proteins, which may lead to cell cycle arrest. Furthermore, the study identified certain bioactive compounds, such as sinigrin, spirostanol, hesperetin and usambarensine, which could potentially contribute to the apoptotic effect of red kale extracts. However, further investigations are necessary to elucidate the specific role of these individual compounds in the anti-cancer process.


Subject(s)
Brassica , Colorectal Neoplasms , Humans , Brassica/metabolism , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/metabolism , Apoptosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
2.
Foods ; 10(11)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34829159

ABSTRACT

This study is a brief report on the proteolytic activity of curly kale leaf extract against casein. Casein degradation products and an in silico analysis of the biological activity of the peptides obtained was performed. The efficiency of casein hydrolysis by curly kale extract was determined using SDS-PAGE and by peptide concentration determination. The pattern of the enzymatic activity was determined by MALDI-TOF MS analysis. The results showed that α- and ß-casein were more resistant to curly kale extract hydrolysis, whereas κ-casein was absent in the protein profile after 8 h of proteolysis, and all casein fractions were completely hydrolyzed after 24 h of incubation. Based on sequence analysis, seven peptides were identified, with molecular mass in the range of 1151-3024 Da. All the peptides were products of ß-casein hydrolysis. The identified amino acid sequences were analyzed in BIOPEP, MBPDB, and FeptideDB databases in order to detect the potential activities of the peptides. In silico analysis suggests that the ß-casein-derived peptides possess sequences of peptides with ACE inhibitory, antioxidant, dipeptidyl peptidase IV inhibitory, antithrombotic, immunomodulatory, and antiamnesic bioactivity. Our study was first to evaluate the possibility of applying curly kale leaf extract to generate biopeptides through ß-casein hydrolysis.

3.
PLoS One ; 16(9): e0256969, 2021.
Article in English | MEDLINE | ID: mdl-34499697

ABSTRACT

The fertility and productive value of soil are closely related to the physical and chemical properties of the soil as well as its biological activity. This activity is related to the intensity of microbially catalysed processes of transformation of organic and mineral substances contained in the soil. These processes are closely correlated with the abundance and biodiversity of soil microorganisms, especially bacteria, and the activity of enzymes produced by them. In this article we have compared some physicochemical properties of soil derived from conventional and organic farms and microbial communities inhabiting these ecosystems. We aim to investigate whether the soil management regime affects the abundance and diversity of these environments in terms of bacteria. Some differences in microbial communities were observed, but the rhizosphere of plants from organic and conventional soils does not harbour separate microbiomes. Albeit, the method of fertilization influences the diversity of soil microorganisms. A greater diversity of bacteria was observed in soils from farms where organic fertilizers were applied. Soil pH and activity of some soil enzymes were also shown to differ between organic and conventional soil cropping systems.


Subject(s)
Bacteria/metabolism , Fertilization/genetics , Rhizosphere , Soil Microbiology , Bacteria/chemistry , Bacteria/genetics , Biodiversity , Fertilizers/standards , Genetic Variation/genetics , Manure/microbiology , Microbiota/genetics , Oryza/growth & development , Oryza/microbiology , Soil/chemistry
4.
Foods ; 10(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34359473

ABSTRACT

Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.

5.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-34079955

ABSTRACT

A new species of entomopathogenic nematodes, Steinernema sandneri n. sp., was recovered by baiting from Poland. Its morphological traits indicate that the new species is a member of the feltiae-kraussei group. A body length of 843 (708-965) µm, a more anterior position of excretory pore (56 µm), and the lower D% value (40 vs > 46) discriminate this species from most of the other group members. The first-generation males of S. sandneri n. sp. can be distinguished from the other clade members by a 60 µm long spicule, a relatively long gubernaculum (GS% = 79), and the position of the excretory pore (80 µm). Phylogenetic analysis of the ITS rDNA, D2D3 of 28 S rDNA, and cox1 sequences confirmed that S. sandneri n. sp. is a new species of the feltiae-kraussei group, closely related to S. kraussei and S. silvaticum.

6.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917427

ABSTRACT

The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10-20%), glucose (2-25%), and fructose (2-24%) were prepared to test the strain's growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.


Subject(s)
Genome, Bacterial , Honey/microbiology , Lactobacillus/genetics , Phylogeny , Lactobacillus/isolation & purification , Whole Genome Sequencing
7.
J Enzyme Inhib Med Chem ; 36(1): 581-592, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33541164

ABSTRACT

The kynurenine pathway is the major tryptophan degradation routes generating bioactive compounds important in physiology and diseases. Depending on cell type it is initiated enzymatically by tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2) to yield N-formylkynurenine as the precursor of further metabolites. Herein, we describe an accurate high-pressure liquid chromatography coupled with a diode array detector (HPLC-DAD) method to serve for IDO1 activity determination in human cancer cells cultured in vitro. Enzymatic activity was expressed as the rate of ʟ-kynurenine generation by 1 mg of proteins obtained from cancer cells. Our approach shows the limit of detection and limit of quantification at 12.9 and 43.0 nM Kyn, respectively. Applicability of this method was demonstrated in different cells (ovarian and breast cancer)exposed to various conditions and has successfully passed the validation process. This approach presents a useful model to study the role of kynurenine pathway in cancer biology.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis , Chromatography, High Pressure Liquid , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tandem Mass Spectrometry , Tumor Cells, Cultured
8.
PeerJ ; 8: e9427, 2020.
Article in English | MEDLINE | ID: mdl-32742775

ABSTRACT

Beer is the most popular low-alcohol beverage consumed in large amounts in many countries each year. The brewing industry is an important global business with huge annual revenues. It is profitable and important for the economies of many countries around the world. The brewing process involves several steps, which lead to fermentation of sugars contained in malt and conversion thereof into alcohol and carbon dioxide by yeasts. Beer brewing generates substantial amounts of by-products. The three main brewing industry wastes include brewer's spent grain, hot trub, and residual brewer's yeast. Proper management of these wastes may bring economical benefits and help to protect the environment from pollution caused by their excessive accumulation. The disposal of these wastes is cumbersome for the producers, however they are suitable for reuse in the food industry. Given their composition, they can serve as a low-cost and highly nutritional source of feed and food additives. They also have a potential to be a cheap material for extraction of compounds valuable for the food industry and a component of media used in biotechnological processes aimed at production of compounds and enzymes relevant for the food industry.

9.
J Vis Exp ; (159)2020 05 09.
Article in English | MEDLINE | ID: mdl-32449703

ABSTRACT

The kynurenine pathway and the tryptophan catabolites called kynurenines have received increased attention for their involvement in immune regulation and cancer biology. An in vitro cell culture assay is often used to learn about the contribution of different tryptophan catabolites in a disease mechanism and for testing therapeutic strategies. Cell culture medium that is rich in secreted metabolites and signaling molecules reflects the status of tryptophan metabolism and other cellular events. New protocols for the reliable quantification of multiple kynurenines in the complex cell culture medium are desired to allow for a reliable and quick analysis of multiple samples. This can be accomplished with liquid chromatography coupled with mass spectrometry. This powerful technique is employed in many clinical and research laboratories for the quantification of metabolites and can be used for measuring kynurenines. Presented here is the use of liquid chromatography coupled with single quadrupole mass spectrometry (LC-SQ) for the simultaneous determination of four kynurenines, i.e., kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic, and xanthurenic acid in the medium collected from in vitro cultured cancer cells. SQ detector is simple to use and less expensive compared to other mass spectrometers. In the SQ-MS analysis, multiple ions from the sample are generated and separated according to their specific mass-to-charge ratio (m/z), followed by the detection using a Single Ion Monitoring (SIM) mode. This paper draws the attention on the advantages of the reported method and indicates some weak points. It is focused on critical elements of LC-SQ analysis including sample preparation along with chromatography and mass spectrometry analysis. The quality control, method calibration conditions and matrix effect issues are also discussed. We described a simple application of 3-nitrotyrosine as one analog standard for all target analytes. As confirmed by experiments with human ovary and breast cancer cells, the proposed LC-SQ method generates reliable results and can be further applied to other in vitro cellular models.


Subject(s)
Chromatography, Liquid/methods , Kynurenine/metabolism , Tandem Mass Spectrometry/methods , Cell Culture Techniques , Culture Media , Humans
10.
Int J Mol Sci ; 20(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31690061

ABSTRACT

The below article presents the results of spectroscopic research, theoretical (time-dependent density functional theory (TD-DFT)), microbiological, and antioxidative calculations for three compounds from the group of 1,3,4-thiadiazoles: 2-amino-5-phenyl-1,3,4-thiadiazole (TB), 2-amino-5-(2-hydroxyphenyl)-1,3,4-thiadiazole (TS), 2-amino-5-(2-hydroxy-5-sulfobenzoyl)-1,3,4-thiadiazole (TSF). In the fluorescence emission spectra (TS) of solutions with varying concentrations of hydrogen ions, a particularly interesting effect of dual fluorescence was observed. The aforementioned effect was observed even more clearly in the environment of butan-1-ol, relative to the compound's concentration. Depending on the modification of the resorcylic substituent (TS and TSF), we observed the emergence of two separate, partially overlapping, fluorescence emission spectra or a single emission spectrum. Interpretation of the obtained spectra using stationary and time-resolved spectroscopy allowed the correlation of the effect's emergence with the phenomenon of molecular aggregation (of a particular type) as well as, above all, the structure of the substituent system. The overlap of said effects most likely induces the processes related to the phenomenon of charge transfer (in TS) and is responsible for the observed fluorescence effects. Also, the position of the -OH group (in the resorcylic ring) is significant and can facilitate the charge transfer (CT). The determinations of the changes in the dipole moment and TD-DFT calculations further corroborate the above assumption. The following paper presents the analysis (the first for this particular group of analogues) of the fluorescence effects relative to the changes in the structure of the resorcylic group combined with pH effects. The results of biological studies also indicate the highest pharmacological potential of the analogue in the case where the effects of dual fluorescence emission are observed, which predisposes this particular group of fluorophores as effective fluorescence probes or potential pharmaceuticals with antimycotic properties.


Subject(s)
Antifungal Agents/chemistry , Thiadiazoles/chemistry , Absorption, Radiation , Antifungal Agents/pharmacology , Antifungal Agents/radiation effects , Candida/drug effects , Fluorescence , Thiadiazoles/pharmacology , Thiadiazoles/radiation effects , Ultraviolet Rays
11.
J Pharm Biomed Anal ; 176: 112805, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31415991

ABSTRACT

Kynurenine pathway is the main route of tryptophan degradation generating a number of immunoregulatory compounds. Some conditions like oxidative stress, inflammatory factors might enhance tryptophan degradation. Process is active in several cells including fibroblasts, cancer cells, and immune cells, therefore it is intensively studied in context of cancer microenvironment. The validated and standardized methodology for kynurenine quantification is crucial for reliable comparison of results obtained in different studies. This paper concerns an approach for simultaneous quantification of four major tryptophan metabolites of the kynurenine pathway (kynurenine, 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid) in cell culture supernatants by liquid chromatography coupled with single quadrupole mass spectrometer. During development of the novel method, the principal component analysis was used to select the best mobile phase and to ensure the optimal conditions for simultaneous quantification of metabolites. The analysis involves simple protein precipitation with acidified methanol and 3-nitrotyrosine as an internal standard. The obtained limits of detection and quantification in cell culture medium were in the range of 3.31-10.80 nmol/L and 9.60-19.50 nmol/L, respectively. At the validation step, other method parameters (linearity, precision, accuracy, recovery, matrix effects) were also evaluated and satisfactory results were obtained for all target compounds. The method was applied to study tryptophan metabolites by determination of kynurenines in cell culture medium from two different human cancer cell lines (MDA-MD-231 and SK-OV-3) in context of exposure to glycation products.


Subject(s)
Culture Media/analysis , Kynurenic Acid/analysis , Metabolomics/methods , Tryptophan/metabolism , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid , Female , Humans , Kynurenic Acid/analogs & derivatives , Kynurenic Acid/metabolism , Limit of Detection , Metabolic Networks and Pathways , Ovarian Neoplasms/metabolism , Tandem Mass Spectrometry
12.
Genes (Basel) ; 8(12)2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29244767

ABSTRACT

Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with clover (Trifolium spp.). Previously, the rosR gene, encoding a global regulatory protein involved in motility, synthesis of cell-surface components, and other cellular processes was identified and characterized in this bacterium. This gene possesses a long upstream region that contains several regulatory motifs, including inverted repeats (IRs) of different lengths. So far, the role of these motifs in the regulation of rosR transcription has not been elucidated in detail. In this study, we performed a functional analysis of these motifs using a set of transcriptional rosR-lacZ fusions that contain mutations in these regions. The levels of rosR transcription for different mutant variants were evaluated in R. leguminosarum using both quantitative real-time PCR and ß-galactosidase activity assays. Moreover, the stability of wild type rosR transcripts and those with mutations in the regulatory motifs was determined using an RNA decay assay and plasmids with mutations in different IRs located in the 5'-untranslated region of the gene. The results show that transcription of rosR undergoes complex regulation, in which several regulatory elements located in the upstream region and some regulatory proteins are engaged. These include an upstream regulatory element, an extension of the -10 element containing three nucleotides TGn (TGn-extended -10 element), several IRs, and PraR repressor related to quorum sensing.

13.
Front Microbiol ; 7: 1302, 2016.
Article in English | MEDLINE | ID: mdl-27602024

ABSTRACT

Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Here, we show that a mutation in rosR resulted in considerable changes in R. leguminosarum bv. trifolii protein profiles. Extracellular, membrane, and periplasmic protein profiles of R. leguminosarum bv. trifolii wild type and the rosR mutant were examined, and proteins with substantially different abundances between these strains were identified. Compared with the wild type, extracellular fraction of the rosR mutant contained greater amounts of several proteins, including Ca(2+)-binding cadherin-like proteins, a RTX-like protein, autoaggregation protein RapA1, and flagellins FlaA and FlaB. In contrast, several proteins involved in the uptake of various substrates were less abundant in the mutant strain (DppA, BraC, and SfuA). In addition, differences were observed in membrane proteins of the mutant and wild-type strains, which mainly concerned various transport system components. Using atomic force microscopy (AFM) imaging, we characterized the topography and surface properties of the rosR mutant and wild-type cells. We found that the mutation in rosR gene also affected surface properties of R. leguminosarum bv. trifolii. The mutant cells were significantly more hydrophobic than the wild-type cells, and their outer membrane was three times more permeable to the hydrophobic dye N-phenyl-1-naphthylamine. The mutation of rosR also caused defects in bacterial symbiotic interaction with clover plants. Compared with the wild type, the rosR mutant infected host plant roots much less effectively and its nodule occupation was disturbed. At the ultrastructural level, the most striking differences between the mutant and the wild-type nodules concerned the structure of infection threads, release of bacteria, and bacteroid differentiation. This confirms an essential role of RosR in establishment of successful symbiotic interaction of R. leguminosarum bv. trifolii with clover plants.

14.
Acta Biochim Pol ; 63(3): 595-600, 2016.
Article in English | MEDLINE | ID: mdl-27337220

ABSTRACT

Oxalate oxidase was identified in mycelial extracts of a basidiomycete Abortiporus biennis strain. Intracellular enzyme activity was detected only after prior lowering of the pH value of the fungal cultures by using oxalic or hydrochloric acids. This enzyme was purified using size exclusion chromatography (Sephadex G-25) and ion-exchange chromatography (DEAE-Sepharose). This enzyme exhibited optimum activity at pH 2 when incubated at 40°C, and the optimum temperature was established at 60°C. Among the tested organic acids, this enzyme exhibited specificity only towards oxalic acid. Molecular mass was calculated as 58 kDa. The values of Km for oxalate and Vmax for the enzyme reaction were 0.015 M and 30 mmol min(-1), respectively.


Subject(s)
Basidiomycota/enzymology , Fungal Proteins/chemistry , Mycelium/enzymology , Oxalic Acid/chemistry , Oxidoreductases/chemistry , Chromatography, Gel , Chromatography, Ion Exchange , Fungal Proteins/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Oxidoreductases/isolation & purification
15.
BMC Genomics ; 16: 1111, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26715155

ABSTRACT

BACKGROUND: Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with red clover (Trifolium pratense). The presence of surface polysaccharides and other extracellular components as well as motility and competitiveness are essential traits for both adaptation of this bacterium to changing environmental conditions and successful infection of host plant roots. The R. leguminosarum bv. trifolii rosR gene encodes a protein belonging to the family of Ros/MucR transcriptional regulators, which contain a Cys2His2-type zinc-finger motif and are involved in the regulation of exopolysaccharide synthesis in several rhizobial species. Previously, it was established that a mutation in the rosR gene significantly decreased exopolysaccharide synthesis, increased bacterial sensitivity to some stress factors, and negatively affected infection of clover roots. RESULTS: RNA-Seq analysis performed for the R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt2472 carrying a rosR mutation identified a large number of genes which were differentially expressed in these two backgrounds. A considerable majority of these genes were up-regulated in the mutant (63.22 %), indicating that RosR functions mainly as a repressor. Transcriptome profiling of the rosR mutant revealed a role of this regulator in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Moreover, it was established that the Rt2472 strain was characterized by a longer generation time and showed an increased aggregation ability, but was impaired in motility as a result of considerably reduced flagellation of its cells. CONCLUSIONS: The comparative transcriptome analysis of R. leguminosarum bv. trifolii wild-type Rt24.2 and the Rt2472 mutant identified a set of genes belonging to the RosR regulon and confirmed the important role of RosR in the regulatory network. The data obtained in this study indicate that this protein affects several cellular processes and plays an important role in bacterial adaptation to environmental conditions.


Subject(s)
Medicago/microbiology , Rhizobium leguminosarum/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/genetics , Rhizobium leguminosarum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
16.
Int J Mol Sci ; 14(12): 23711-35, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24317432

ABSTRACT

The symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii 24.2 secretes large amounts of acidic exopolysaccharide (EPS), which plays a crucial role in establishment of effective symbiosis with clover. The biosynthesis of this heteropolymer is conducted by a multi-enzymatic complex located in the bacterial inner membrane. PssA protein, responsible for the addition of glucose-1-phosphate to a polyprenyl phosphate carrier, is involved in the first step of EPS synthesis. In this work, we characterize R. leguminosarum bv. trifolii strain Rt270 containing a mini-Tn5 transposon insertion located in the 3'-end of the pssA gene. It has been established that a mutation in this gene causes a pleiotropic effect in rhizobial cells. This is confirmed by the phenotype of the mutant strain Rt270, which exhibits several physiological and symbiotic defects such as a deficiency in EPS synthesis, decreased motility and utilization of some nutrients, decreased sensitivity to several antibiotics, an altered extracellular protein profile, and failed host plant infection. The data of this study indicate that the protein product of the pssA gene is not only involved in EPS synthesis, but also required for proper functioning of Rhizobium leguminosarum bv. trifolii cells.


Subject(s)
Bacterial Proteins/genetics , Glycosyltransferases/genetics , Polysaccharides, Bacterial/metabolism , Rhizobium leguminosarum/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Detergents/pharmacology , Ethanol/pharmacology , Genome, Bacterial , Glycosyltransferases/metabolism , Medicago/microbiology , Metabolome , Microbial Sensitivity Tests , Mutagenesis , Phenotype , Rhizobium leguminosarum/drug effects , Rhizobium leguminosarum/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...