Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Phys Med ; 120: 103337, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552274

ABSTRACT

The metrics used for assessing image quality in computed tomography (CT) do not integrate the influence of temporal resolution. A shortcoming in the assessment of image quality for imaging protocols where motion blur can therefore occur. We developed a method to calculate the temporal resolution of standard CT protocols and introduced a specific spatiotemporal formulation of the non-prewhitening with eye filter (NPWE) model observer to assess the detectability of moving objects as a function of their speed. We scanned a cubic water phantom with a plexiglass cylindrical insert (120 HU) using a large panel of acquisition parameters (rotation times, pitch factors and collimation widths) on two systems (GE Revolution Apex and Siemens SOMATOM Force) to determine the in-plane task-based transfer functions (TTF) and noise power spectra (NPS). The phantom set in a uniform rectilinear motion in the transverse plane allowed the temporal modulation transfer function (MTF) calculation. The temporal MTF appropriately compared the temporal resolution of the various acquisition protocols. The longitudinal TTF was measured using a thin tungsten wire. The detectability index showed the advantage of applying high rotation speed, wide collimations and high pitch for object detection in the presence of motion. No counterpart to the increase in these three parameters was found in the in-plane and longitudinal image quality.


Subject(s)
Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , Radiation Dosage , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Algorithms
2.
Phys Med Biol ; 66(24)2021 12 06.
Article in English | MEDLINE | ID: mdl-34808602

ABSTRACT

Objectives. The planar formulation of the noise equivalent quanta (NEQ) and detective quantum efficiency (DQE) used to assess the image quality of projection images does not deal with the influence of temporal resolution on signal blurring and image noise. These metrics require correction factors based on temporal resolution when used for dynamic imaging systems such as fluoroscopy. Additionally, the standard NEQ and detector DQE are determined on pre-processed images in scatter-free conditions for effective energies produced by additional aluminium or copper filters that are not representative of clinical fluoroscopic procedures. In this work, we developed a method to measure 'frame NEQ' and 'frame system DQE' which include the temporal frequency bandwidth and consider the anti-scatter grid, the detector and the image processing procedures for beam qualities with scatter fractions representative of clinical use.Approach. We used a solid water phantom to simulate a patient and a thin copper disc to measure the spatial resolution. The copper disc, set in uniform rectilinear motion in the image plane, assessed the temporal resolution. These new metrics were tested on two fluoroscopy systems, a C-arm and a floor-mounted cardiology, for multiple parameters: phantom thicknesses from 5 to 20 cm, frame rates from 3 to 30 fps, spatial and temporal image processing of different weights.Main results.The frame NEQ correctly described the image quality for different scatter conditions, temporal resolutions and image processing techniques. The frame system DQE varied between 0.38 and 0.65 within the different beam and scatter conditions, and correctly mitigated the influence of spatial and temporal image processing.Significance.This study introduces and validates an unbiased formulation of in-plane NEQ and system DQE to assess the spatiotemporal image quality of fluoroscopy systems.


Subject(s)
Copper , Image Processing, Computer-Assisted , Fluoroscopy/methods , Humans , Phantoms, Imaging
3.
Eur J Radiol ; 141: 109808, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34120010

ABSTRACT

OBJECTIVES: To compare deep learning (True Fidelity, TF) and partial model based Iterative Reconstruction (ASiR-V) algorithm for image texture, low contrast lesion detectability and potential dose reduction. METHODS: Anthropomorphic phantoms (mimicking non-overweight and overweight patient), containing lesions of 6 mm in diameter with 20HU contrast, were scanned at five different dose levels (2,6,10,15,20 mGy) on a CT system, using clinical routine protocols for liver lesion detection. Images were reconstructed using ASiR-V 0% (surrogate for FBP), 60 % and TF at low, medium and high strength. Noise texture was characterized by computing a normalized Noise Power Spectrum filtered by an eye filter. The similarity against FBP texture was evaluated using peak frequency difference (PFD) and root mean square deviation (RMSD). Low contrast detectability was assessed using a channelized Hotelling observer and the area under the ROC curve (AUC) was used as figure of merit. Potential dose reduction was calculated to obtain the same AUC for TF and ASiR-V. RESULTS: FBP-like noise texture was more preserved with TF (PFD from -0.043mm-1 to -0.09mm-1, RMSD from 0.12mm-1 to 0.21mm-1) than with ASiR-V (PFD equal to 0.12 mm-1, RMSD equal to 0.53mm-1), resulting in a sharper image. AUC was always higher with TF than ASIR-V. In average, TF compared to ASiR-V, enabled a radiation dose reduction potential of 7%, 25 % and 33 % for low, medium and high strength respectively. CONCLUSION: Compared to ASIR-V, TF at high strength does not impact noise texture and maintains low contrast liver lesions detectability at significant lower dose.


Subject(s)
Deep Learning , Liver Neoplasms , Algorithms , Humans , Liver Neoplasms/diagnostic imaging , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed
4.
Eur Radiol ; 31(11): 8236-8245, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33914115

ABSTRACT

OBJECTIVE: To determine a personalized and optimized contrast injection protocol for a uniform and optimal diagnostic level of liver parenchymal enhancement, in a large patient population enrolled in a multicenter study. METHODS: Six hundred ninety-two patients who underwent a standardized multi-phase liver CT examination were prospectively assigned to one contrast media (CM) protocol group: G1 (100 mL fixed volume, 37 gI); G2 (600 mgI/kg of total body weight (TBW)); G3 (750 mgI/kg of fat-free mass (FFM)), and G4 (600 mgI/kg of FFM). Change in liver parenchyma CT number between unenhanced and contrast-enhanced images was measured by two radiologists, on 3-mm pre-contrast and portal phase axial reconstructions. The enhancement histograms were compared across CM protocols, specifically according to a target diagnostic value of 50 HU. The total amount of iodine dose was also compared among protocols by median and interquartile range (IQR). The Kruskal-Wallis and Mann-Whitney U tests were used to assess significant differences (p < 0.005), as appropriate. RESULTS: A significant difference (p < 0.001) was found across the groups with liver enhancement decreasing from median over-enhanced values of 77.0 (G1), 71.3 (G2), and 65.1 (G3) to a target enhancement of 53.2 HU for G4. Enhancement IQR was progressively reduced from 26.5 HU (G1), 26.0 HU (G2), and 17.8 HU (G3) to 14.5 HU (G4). G4 showed a median iodine dose of 26.0 gI, significantly lower (p < 0.001) than G3 (33.9 gI), G2 (38.8 gI), and G1 (37 gI). CONCLUSIONS: The 600 mgI/kg FFM-based protocol enabled a diagnostically optimized liver enhancement and improved patient-to-patient enhancement uniformity, while significantly reducing iodine load. KEY POINTS: • Consistent and clinically adequate liver enhancement is observed with personalized and optimized contrast injection protocol. • Fat-free mass is an appropriate body size parameter for correlation with liver parenchymal enhancement. • Diagnostic oncology follow-up liver CT examinations may be obtained using 600 mgI/kg of FFM.


Subject(s)
Contrast Media , Iodine , Humans , Liver/diagnostic imaging , Multicenter Studies as Topic , Prospective Studies , Tomography, X-Ray Computed
5.
Phys Med Biol ; 65(10): 105009, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32182590

ABSTRACT

The standard Fourier metrics used for assessing image quality in computed tomography (CT) use a planar (2D) formulation of the noise equivalent quanta (NEQ) without a specific concept to manage the influence of longitudinal resolution variations, thus create a bias in the comparison of image quality for different reconstructed slice thicknesses. For this work, we designed a 'slice NEQ' that takes the longitudinal resolution into account and provides a volumetric indication of the scanner imaging performance. We also developed a specific formulation for the system DQE at the CT isocentre. A cylindrical water phantom with three different inserts for three contrast levels (-100, 120 and 1000 HU) was used for the task-based transfer functions (TTF) and noise power spectra (NPS) measurements. The longitudinal TTF was measured using the point source of the Catphan® 600 phantom. Images of the phantoms were acquired on two scanners (GE Discovery 750 HD and Siemens SOMATOM Force) and reconstructed using different slice thicknesses between 1 and 5 mm and algorithms (FBP for both systems, ASIR 50 and ASIR-V 50 for the GE). The slice NEQ correctly compared the imaging performance for different longitudinal resolutions whereas the 2D NEQ increased proportionally with the reconstructed slice thickness. The system DQE peaked at 0.70 (at 0.1 mm-1) for the Siemens and at 0.50 (at 0.1 mm-1) for the GE for FBP reconstructions. The validity of these Fourier-based metrics was restricted to a limited range of contrast due to nonlinearities introduced when dealing with iterative reconstructions (IR).


Subject(s)
Tomography, X-Ray Computed/methods , Algorithms , Humans , Phantoms, Imaging , Radiation Dosage , Signal-To-Noise Ratio , Water
6.
Phys Med ; 31(8): 823-843, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26459319

ABSTRACT

Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.


Subject(s)
Quality Assurance, Health Care/methods , Tomography, X-Ray Computed , Humans , Image Processing, Computer-Assisted , Observer Variation
7.
Comput Nurs ; 10(5): 201-7, 1992.
Article in English | MEDLINE | ID: mdl-1393801

ABSTRACT

The successful implementation of computerized nursing information systems requires the completion of many tasks and the participation of many persons. In 1989, Pulliam and Boettcher described a six-step process for introducing computerized information systems into long-term care facilities. This article describes the process, particularly the implementation phase, as it actually happened in a 124-bed facility in a mid-Atlantic state. This facility found that successful implementation requires a systems coordinator who is a professional nurse who understands the needs of the patients, can integrate information with the computer system, and can provide on-going support for the users.


Subject(s)
Long-Term Care/organization & administration , Management Information Systems , Nursing Care/organization & administration , Delaware
SELECTION OF CITATIONS
SEARCH DETAIL
...