Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
3.
Article in English | MEDLINE | ID: mdl-33608382

ABSTRACT

Diagnosis of B-cell chronic lymphocytic leukemia (B-CLL) is usually straightforward, involving clinical, immunophenotypic (Matutes score), and (immuno)genetic analyses (to refine patient prognosis for treatment). CLL cases with atypical presentation (e.g., Matutes ≤ 3) are also encountered, and for these diseases, biology and prognostic impact are less clear. Here we report the genomic characterization of a case of atypical B-CLL in a 70-yr-old male patient; B-CLL cells showed a Matutes score of 3, chromosomal translocation t(14;18)(q32;q21) (BCL2/IGH), mutated IGHV, deletion 17p, and mutations in BCL2, NOTCH1 (subclonal), and TP53 (subclonal). Quite strikingly, a novel PAX5 mutation that was predicted to be loss of function was also seen. Exome sequencing identified, in addition, a potentially actionable BRAF mutation, together with novel somatic mutations affecting the homeobox transcription factor NKX2-3, known to control B-lymphocyte development and homing, and the epigenetic regulator LRIF1, which is implicated in chromatin compaction and gene silencing. Neither NKX2-3 nor LRIF1 mutations, predicted to be loss of function, have previously been reported in B-CLL. Sequencing confirmed the presence of these mutations together with BCL2, NOTCH1, and BRAF mutations, with the t(14;18)(q32;q21) translocation, in the initial diagnostic sample obtained 12 yr prior. This is suggestive of a role for these novel mutations in B-CLL initiation and stable clonal evolution, including upon treatment withdrawal. This case extends the spectrum of atypical B-CLL with t(14;18)(q32;q21) and highlights the value of more global precision genomics for patient follow-up and treatment in these patients.


Subject(s)
Cell Cycle Proteins/metabolism , Epigenesis, Genetic , Homeodomain Proteins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , PAX5 Transcription Factor/genetics , Proto-Oncogene Proteins B-raf/metabolism , Transcription Factors/genetics , Aged , Cell Cycle Proteins/genetics , Clonal Evolution , Homeodomain Proteins/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , PAX5 Transcription Factor/metabolism , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Receptor, Notch1/genetics , Transcription Factors/metabolism , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Exome Sequencing
4.
J Mol Med (Berl) ; 97(5): 633-645, 2019 05.
Article in English | MEDLINE | ID: mdl-30843084

ABSTRACT

Cohen syndrome (CS) is a rare genetic disorder due to mutations in VPS13B gene. Among various clinical and biological features, CS patients suffer from inconsistent neutropenia, which is associated with recurrent but minor infections. We demonstrate here that this neutropenia results from an exaggerate rate of neutrophil apoptosis. Besides this increased cell death, which occurs in the absence of any endoplasmic reticulum stress or defect in neutrophil elastase (ELANE) expression or localization, all neutrophil functions appeared to be normal. We showed a disorganization of the Golgi apparatus in CS neutrophils precursors, that correlates with an altered glycosylation of ICAM-1 in these cells, as evidenced by a migration shift of the protein. Furthermore, a striking decrease in the expression of SERPINB1 gene, which encodes a critical component of neutrophil survival, was detected in CS neutrophils. These abnormalities may account for the excessive apoptosis of neutrophils leading to neutropenia in CS. KEY MESSAGES: Cohen syndrome patients' neutrophils display normal morphology and functions. Cohen syndrome patients' neutrophils have an increased rate of spontaneous apoptosis compared to healthy donors' neutrophils. No ER stress or defective ELA2 expression or glycosylation was observed in Cohen syndrome patients' neutrophils. SerpinB1 expression is significantly decreased in Cohen syndrome neutrophils as well as in VPS13B-deficient cells.


Subject(s)
Apoptosis , Fingers/abnormalities , Intellectual Disability/genetics , Microcephaly/genetics , Muscle Hypotonia/genetics , Myopia/genetics , Neutropenia/genetics , Neutrophils/pathology , Obesity/genetics , Retinal Degeneration/genetics , Serpins/genetics , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Down-Regulation , Female , Fingers/pathology , Humans , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Microcephaly/complications , Microcephaly/pathology , Middle Aged , Muscle Hypotonia/complications , Muscle Hypotonia/pathology , Mutation , Myopia/complications , Myopia/pathology , Neutropenia/etiology , Neutropenia/pathology , Neutrophils/metabolism , Obesity/complications , Obesity/pathology , Retinal Degeneration/complications , Retinal Degeneration/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...