Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(43): 40442-40455, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37929081

ABSTRACT

To reduce the production cost of chemicals from renewable resources, the feedstock loading must be high and the catalyst must be of low cost and efficient. In this study, at a very short reaction time of 10 min at 125 °C, concentrated sugar solutions (20 wt %, 101 wt % on solvent) were converted to 5-hydroxymethylfurfural (HMF) over a cotton gin trash (CGT)-derived sulfonated carbon catalyst in a 1-butyl-3-methyl-imidazolium chloride ([BMIM]Cl) and 2-methyltetrahydrofuran (MeTHF) biphasic system. We report, for the first time, that the presence of glucose either as a covalently bonded monomer in sucrose or in a mixture with fructose achieved yields of HMF up to 62 mol % compared to a value of only 39 mol % obtained with fructose on its own. In the concentrated reaction medium, glucose, fructose, and sucrose molecules produce difructose anhydrides, dimers/reversion products, and sucrose isomers. The glucose-fructose dimers formed in sucrose and glucose/fructose reaction systems play a critical role in the transformation of the sugars to a higher-than-expected HMF yield. Thus, a strategy of using cellulosic glucose, where it is partially converted to fructose content and the high sugar concentration sugar mixture is then converted to HMF, should be exploited for future biorefineries.

2.
Front Chem ; 8: 659, 2020.
Article in English | MEDLINE | ID: mdl-32850671

ABSTRACT

Achieving the goal of living in a sustainable and greener society, will need the chemical industry to move away from petroleum-based refineries to bio-refineries. This aim can be achieved by using biomass as the feedstock to produce platform chemicals. A platform chemical, 2,5-furandicarboxylic acid (FDCA) has gained much attention in recent years because of its chemical attributes as it can be used to produce green polymers such polyethylene 2,5-furandicarboxylate (PEF) that is an alternative to polyethylene terephthalate (PET) produced from fossil fuel. Typically, 5-(hydroxymethyl)furfural (HMF), an intermediate product of the acid dehydration of sugars, can be used as a precursor for the production of FDCA, and this transformation reaction has been extensively studied using both homogeneous and heterogeneous catalysts in different reaction media such as basic, neutral, and acidic media. In addition to the use of catalysts, conversion of HMF to FDCA occurs in the presence of oxidants such as air, O2, H2O2, and t-BuOOH. Among them, O2 has been the preferred oxidant due to its low cost and availability. However, due to the low stability of HMF and high processing cost to convert HMF to FDCA, researchers are studying the direct conversion of carbohydrates and biomass using both a single- and multi-phase approach for FDCA production. As there are issues arising from FDCA purification, much attention is now being paid to produce FDCA derivatives such as 2, 5-furandicarboxylic acid dimethyl ester (FDCDM) to circumvent these problems. Despite these technical barriers, what is pivotal to achieve in a cost-effective manner high yields of FDCA and derivatives, is the design of highly efficient, stable, and selective multi-functional catalysts. In this review, we summarize in detail the advances in the reaction chemistry, catalysts, and operating conditions for FDCA production from sugars and carbohydrates.

3.
Biotechnol Biofuels ; 6(1): 153, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24156757

ABSTRACT

BACKGROUND: Pretreatment of lignocellulosic biomass is a prerequisite for effective saccharification to produce fermentable sugars. In this study, "green" solvent systems based on acidified mixtures of glycerol carbonate (GC) and glycerol were used to treat sugarcane bagasse and the roles of each solvent in deconstructing biomass were determined. RESULTS: Pretreatment of sugarcane bagasse at 90°C for only 30 min with acidified GC produced a solid residue having a glucan digestibility of 90% and a glucose yield of 80%, which were significantly higher than a glucan digestibility of 16% and a glucose yield of 15% obtained for bagasse pretreated with acidified ethylene carbonate (EC). Biomass compositional analyses showed that GC pretreatment removed more lignin than EC pretreatment (84% vs 54%). Scanning electron microscopy (SEM) showed that fluffy and size-reduced fibres were produced from GC pretreatment whereas EC pretreatment produced compact particles of reduced size. The maximal glucan digestibility and glucose yield of GC/glycerol systems were about 7% lower than those of EC/ethylene glycol (EG) systems. Replacing up to 50 wt% of GC with glycerol did not negatively affect glucan digestibility and glucose yield. The results from pretreatment of microcrystalline cellulose (MCC) showed that (1) pretreatment with acidified alkylene glycol (AG) alone increased enzymatic digestibility compared to pretreatments with acidified alkylene carbonate (AC) alone and acidified mixtures of AC and AG, (2) pretreatment with acidified GC alone slightly increased, but with acidified EC alone significantly decreased, enzymatic digestibility compared to untreated MCC, and (3) there was a good positive linear correlation of enzymatic digestibility of treated and untreated MCC samples with congo red (CR) adsorption capacity. CONCLUSIONS: Acidified GC alone was a more effective solvent for pretreatment of sugarcane bagasse than acidified EC alone. The higher glucose yield obtained with GC-pretreated bagasse is possibly due to the presence of one hydroxyl group in the GC molecular structure, resulting in more significant biomass delignification and defibrillation, though both solvent pretreatments reduced bagasse particles to a similar extent. The maximum glucan digestibility of GC/glycerol systems was less than that of EC/EG systems, which is likely attributed to glycerol being less effective than EG in biomass delignification and defibrillation. Acidified AC/AG solvent systems were more effective for pretreatment of lignin-containing biomass than MCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...